
Maven: By Example
An Introduction to Apache Maven

January 2010
Edition 0.3.1

Maven by Example
An Introduction to Apache Maven

A Sonatype Open Book
Mountain View, CA

Tim O’Brien
Jason van Zyl

Brian Fox
John Casey

Juven Xu
Thomas Locher

Contributing Authors:

Dan Fabulich
Eric Redmond
Bruce Snyder
Larry Shatzer

Copyright © 2009 Sonatype, Inc.

This work is licensed under a Creative Commons Attribution-Noncommercial-No
Derivative Works 3.0 United States license. For more information about this license,
see http://creativecommons.org/licenses/by-nc-nd/3.0/us/. You are free to share,
copy, distribute, display, and perform the work under the following conditions:

 • You must attribute the work to Sonatype, Inc. with a link to
 http://www.sonatype.com.
 • You may not use this work for commercial purposes.
 • You may not alter, transform, or build upon this work.

Nexus™, Nexus Professional™, and all Nexus-related logos are trademarks or registered
trademarks of Sonatype, Inc., in the United States and other countries. Java™ and all
Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. IBM® and WebSphere® are
trademarks or registered trademarks of International Business Machines, Inc., in the
United States and other countries. Eclipse™ is a trademark of the Eclipse Foundation,
Inc., in the United States and other countries. Apache and the Apache feather logo are
trademarks of The Apache Software Foundation.

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Sonatype, Inc. was aware of a trademark claim, the designations have been printed in
caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

Published by:

Sonatype, Inc.
800 W. El Camino Real
Suite 400
Mountain View, CA 94040.

ISBN 978-0-9842433-3-4 Editor: Tim O’Brien

For online information and ordering of this and other
Sonatype books, please visit www.sonatype.com. The
publisher o�ers discounts on this book when ordered in
quantity. For more information, please contact:
book@sonatype.com

Maven Training by Sonatype

http://www.sonatype.com/training

With Sonatype training, you will learn Maven fundamentals and best practices directly
from Maven and Nexus experts. If your team is using Nexus, this class is the easiest
way to make sure that everyone starts from the same foundation.

MVN-101 Maven Mechanics
An online instructor-led course of two half-day sessions, ideal for programmers who
work with Maven projects and need to understand how to work with an existing
Maven build. This class is also appropriate for experienced Maven users who are inter-
ested in becoming more familiar with Maven fundamentals.

MVN-201 Development Infrastructure Design
An online instructor-led course of two half-day sessions, ideal for Development Infra-
structure Engineers who are responsible for maintaining enterprise development infra-
structure. This class includes content on advanced repository management using
Nexus and continuous integration using Hudson.

Nexus Professional

http://www.sonatype.com/products/nexus

Nexus Professional 1.4 is now available with a wide array of new features. This release
introduces new staging and repository management capabilities as well as improved
permissions management tools. Download your free, 30-day evaluation today.

"At Intuit, we recognize that as builds grow and the teams who create them change
over time, swift, accurate repository management becomes critical. Nexus provides
a comprehensive, easy-to-use open source solution that lets teams and developers
track, search, organize and access build components."

 - Kaizer Sogiawala, Software Con�guration Management Engineer, Intuit.

"We have adopted Maven for all our software development projects and have
started using Nexus to better support our development processes. The support for
promotion and procurement work�ows in Nexus Professional now expands Nexus
with a robust set of additional features which make it easier for us to maintain
consistency between our development, testing and production environments."

 - Chris Maki, Principal Software Engineer, Overstock.com

Copyright .. xi
Foreword: 0.3.1 .. xiii

1. Changes in Edition 0.2.1 .. xiii
Preface .. xv

1. How to Use this Book .. xv
2. Your Feedback .. xv
3. Font Conventions .. xvi
4. Maven Writing Conventions ... xvi
5. Acknowledgements ... xvii

1. Introducing Apache Maven ... 1
1.1. Maven... What is it? .. 1
1.2. Convention Over Configuration ... 1
1.. A Common Interface ... 2
1.4. Universal Reuse through Maven Plugins ... 3
1.5. Conceptual Model of a "Project" .. 4
1.6. Is Maven an alternative to XYZ? ... 5
1.. Comparing Maven with Ant ... 5

2. Installing Maven ... 9
2.1. Verify your Java Installation ... 9
2.2. Downloading Maven .. 9
2.3. Installing Maven ... 10

2.3.1. Installing Maven on Mac OSX .. 10
2.3.2. Installing Maven on Microsoft Windows ... 11
2.3.3. Installing Maven on Linux .. 11
2.3.4. Installing Maven on FreeBSD or OpenBSD ... 12

2.4. Testing a Maven Installation .. 12
2.5. Maven Installation Details ... 12

2.5.1. User-specific Configuration and Repository ... 13
2.5.2. Upgrading a Maven Installation ... 13
2.5.3. Upgrading from Maven 1.x to Maven 2.x .. 14

2.6. Uninstalling Maven .. 14
2.7. Getting Help with Maven .. 15
2.8. About the Apache Software License ... 15

3. A Simple Maven Project ... 17
3.1. Introduction .. 17

3.1.1. Downloading this Chapter's Example .. 17
3.2. Creating a Simple Project ... 17
3.3. Building a Simple Project ... 20
3.4. Simple Project Object Model ... 20
3.5. Core Concepts .. 22

3.5.1. Maven Plugins and Goals ... 22
3.5.2. Maven Lifecycle ... 24
3.5.3. Maven Coordinates ... 27

iv

3.5.4. Maven Repositories ... 29
3.5.5. Maven's Dependency Management ... 31
3.5.6. Site Generation and Reporting ... 33

3.6. Summary ... 33
4. Customizing a Maven Project .. 35

4.1. Introduction .. 35
4.1.1. Downloading this Chapter's Example .. 35

4.2. Defining the Simple Weather Project .. 35
4.2.1. Yahoo! Weather RSS ... 36

4.3. Creating the Simple Weather Project ... 36
4.4. Customize Project Information ... 38
4.5. Add New Dependencies .. 39
4.6. Simple Weather Source Code .. 40
4.7. Add Resources .. 46
4.8. Running the Simple Weather Program ... 47

4.8.1. The Maven Exec Plugin ... 48
4.8.2. Exploring Your Project Dependencies ... 48

4.9. Writing Unit Tests ... 50
4.10. Adding Test-scoped Dependencies .. 52
4.11. Adding Unit Test Resources .. 53
4.12. Executing Unit Tests .. 55

4.12.1. Ignoring Test Failures .. 56
4.12.2. Skipping Unit Tests ... 57

4.13. Building a Packaged Command Line Application ... 58
4.13.1. Attaching the Assembly Goal to the Package Phase 59

5. A Simple Web Application .. 61
5.1. Introduction .. 61

5.1.1. Downloading this Chapter's Example .. 61
5.2. Defining the Simple Web Application ... 61
5.3. Creating the Simple Web Project .. 61
5.4. Configuring the Jetty Plugin .. 64
5.5. Adding a Simple Servlet ... 65
5.6. Adding J2EE Dependencies ... 67
5.7. Conclusion ... 69

6. A Multi-module Project .. 71
6.1. Introduction .. 71

6.1.1. Downloading this Chapter's Example .. 71
6.2. The Simple Parent Project ... 71
6.3. The Simple Weather Module ... 73
6.4. The Simple Web Application Module ... 75
6.5. Building the Multimodule Project ... 77
6.6. Running the Web Application .. 78

7. Multi-module Enterprise Project ... 81

v

7.1. Introduction .. 81
7.1.1. Downloading this Chapter's Example .. 81
7.1.2. Multi-module Enterprise Project .. 81
7.1.3. Technology Used in this Example .. 83

7.2. The Simple Parent Project ... 84
7.3. The Simple Model Module .. 85
7.4. The Simple Weather Module ... 89
7.5. The Simple Persist Module ... 93
7.6. The Simple Web Application Module ... 99
7.7. Running the Web Application .. 109
7.8. The Simple Command Module ... 110
7.9. Running the Simple Command ... 116
7.10. Conclusion .. 118

7.10.1. Programming to Interface Projects .. 119
8. Optimizing and Refactoring POMs .. 121

8.1. Introduction .. 121
8.2. POM Cleanup ... 122
8.3. Optimizing Dependencies .. 122
8.4. Optimizing Plugins .. 126
8.5. Optimizing with the Maven Dependency Plugin .. 127
8.6. Final POMs .. 131
8.7. Conclusion ... 138

A. Creative Commons License ... 139
A.1. Creative Commons BY-NC-ND 3.0 US License ... 140

B. Book Revision History ... 145
B.1. Changes in Edition 0.2.1 .. 145
B.2. Changes in Edition 0.2 ... 145
B.3. Changes in Edition 0.1 ... 145

Index ... 147

List of Figures
3.1. A Plugin Contains Goals .. 22
3.2. A Goal Binds to a Phase .. 24
3.3. Bound Goals are Run when Their Phases Execute ... 26
3.4. A Maven Project's Coordinates .. 28
3.5. Maven Space is a coordinate system of projects .. 29
3.6. Maven Resolves Transitive Dependencies .. 32
7.1. Multi-module Enterprise Application Module Relationships ... 82
7.2. Simple Object Model for Weather Data ... 86
7.3. Spring MVC Controllers Referencing Components in simple-weather and simple-persist. 100
7.4. Command line application referencing simple-weather and simple-persist 111
7.5. Programming to Interface Projects .. 120

List of Examples
1.1. A Simple Ant build.xml file .. 6
1.2. A Sample Maven pom.xml ... 7
3.1. Simple project's pom.xml file .. 21
4.1. Initial POM for the simple-weather project ... 37
4.2. POM for the simple-weather project with compiler configuration 37
4.3. Adding Organizational, Legal, and Developer Information to the pom.xml 38
4.4. Adding Dom4J, Jaxen, Velocity, and Log4J as Dependencies .. 39
4.5. Simple Weather's Weather Model Object ... 41
4.6. Simple Weather's Main Class .. 42
4.7. Simple Weather's YahooRetriever Class .. 43
4.8. Simple Weather's YahooParser Class .. 44
4.9. Simple Weather's WeatherFormatter Class ... 45
4.10. Simple Weather's Log4J Configuration File .. 46
4.11. Simple Weather's Output Velocity Template ... 46
4.12. Simple Weather's YahooParserTest Unit Test .. 51
4.13. Simple Weather's WeatherFormatterTest Unit Test ... 52
4.14. Adding a Test-scoped Dependency .. 53
4.15. Simple Weather's WeatherFormatterTest Expected Output ... 54
4.16. Simple Weather's YahooParserTest XML Input ... 54
4.17. Ignoring Unit Test Failures .. 56
4.18. Plugin Parameter Expressions .. 56
4.19. Skipping Unit Tests ... 57
4.20. Configuring the Maven Assembly Descriptor .. 58
4.21. Configuring attached Goal Execution during the package Lifecycle Phase 60
5.1. Initial POM for the simple-web project ... 62
5.2. POM for the simple-web project with compiler configuration ... 63
5.3. Configuring the Jetty Plugin .. 64
5.4. Contents of src/main/webapp/index.jsp .. 65
5.5. Contents of src/main/webapp/WEB-INF/web.xml .. 65
5.6. SimpleServlet Class ... 66
5.7. Mapping the Simple Servlet .. 66
5.8. Add the Servlet 2.4 Specification as a Dependency .. 67
5.9. Adding the JSP 2.0 Specification as a Dependency .. 68
6.1. simple-parent Project POM ... 71
6.2. simple-weather Module POM .. 73
6.3. The WeatherService class ... 74
6.4. simple-webapp Module POM .. 75
6.5. simple-webapp WeatherServlet .. 76
6.6. simple-webapp web.xml ... 76
7.1. simple-parent Project POM ... 84

x

7.2. simple-model pom.xml ... 86
7.3. Annotated Weather Model Object ... 87
7.4. simple-model's Condition model object. ... 89
7.5. simple-weather Module POM .. 90
7.6. The WeatherService class ... 91
7.7. Spring Application Context for the simple-weather Module ... 92
7.8. simple-persist POM ... 93
7.9. simple-persist's WeatherDAO Class .. 95
7.10. Spring Application Context for simple-persist ... 96
7.11. simple-persist hibernate.cfg.xml .. 98
7.12. POM for simple-webapp ... 100
7.13. simple-webapp WeatherController ... 103
7.14. weather.vm template rendered by WeatherController ... 104
7.15. simple-web HistoryController ... 104
7.16. history.vm rendered by the HistoryController .. 105
7.17. Spring Controller configuration weather-servlet.xml ... 106
7.18. web.xml for simple-webapp ... 107
7.19. POM for simple-command ... 111
7.20. The Main class for simple-command ... 113
7.21. WeatherFormatter renders weather data using a Velocity template 115
7.22. The weather.vm Velocity template .. 116
7.23. The history.vm Velocity template .. 116
8.1. Final POM for simple-parent ... 131
8.2. Final POM for simple-command ... 133
8.3. Final POM for simple-model ... 134
8.4. Final POM for simple-persist ... 135
8.5. Final POM for simple-weather ... 136
8.6. Final POM for simple-webapp ... 137

Copyright
Copyright © 2009 Sonatype, Inc.

Online version published by Sonatype, Inc., 800 W. El Camino Real, Suite 400, Mountain View, CA,
94040.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
United States license. For more information about this license, see http://creativecommons.org/licenses/
by-nc-nd/3.0/us/.

Nexus™, Nexus Professional™, and all Nexus-related logos are trademarks or registered trademarks of
Sonatype, Inc., in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries.

IBM® and WebSphere® are trademarks or registered trademarks of International Business Machines,
Inc., in the United States and other countries.

Eclipse™ is a trademark of the Eclipse Foundation, Inc., in the United States and other countries.

Apache and the Apache feather logo are trademarks of The Apache Software Foundation.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Sonatype, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Foreword: 0.3.1
We've had some great feedback so far, please keep it coming. Your feedback is greatly appreciated,
send it to book@sonatype.com1. To keep yourself informed of updates, read the book blog at: http://
blogs.sonatype.com/book. Everyone at Sonatype has had a hand in this version of the book, so the author
is officially "Sonatype".

Please report any bugs or issues on this book's GetSatisfaction page, here: http://
www.getsatisfaction.com/sonatype/products/sonatype_maven_by_example.

Tim O'Brien (tobrien@sonatype.com)

Evanston, IL

November 19, 2009

1. Changes in Edition 0.2.1
The following changes were made in 0.2.1:

• Minor typos were fixed throughout the book.

1 mailto:book@sonatype.com

mailto:book@sonatype.com
http://blogs.sonatype.com/book
http://blogs.sonatype.com/book
http://www.getsatisfaction.com/sonatype/products/sonatype_maven_by_example
http://www.getsatisfaction.com/sonatype/products/sonatype_maven_by_example
mailto:book@sonatype.com

Preface
Maven is a build tool, a project management tool, an abstract container for running build tasks. It is a
tool that has shown itself indispensable for projects that graduate beyond the simple and need to start
finding consistent ways to manage and build large collections of interdependent modules and libraries
which make use of tens or hundreds of third-party components. It is a tool that has removed much of
the burden of 3rd party dependency management from the daily work schedule of millions of engineers,
and it has enabled many organizations to evolve beyond the toil and struggle of build management into
a new phase where the effort required to build and maintain software is no longer a limiting factor in
software design.

This work is the first attempt at a comprehensive title on Maven. It builds upon the combined experience
and work of the authors of all previous Maven titles, and you should view it not as a finished work but
as the first edition in a long line of updates to follow. While Maven has been around for a few years,
the authors of this book believe that it has just begun to deliver on the audacious promises it makes.
The authors, and company behind this book, Sonatype1, believe that the publishing of this book marks
the beginning of a new phase of innovation and development surrounding Maven and the software
ecosystem that surrounds it.

1. How to Use this Book

Pick it up, read some of the text on the pages. Once you reach the end of a page, you'll want to either
click on a link if you are looking at the HTML version, or, if you have the printed book, you'll lift up a
corner of a page and turn it. If you are sitting next to a computer, you can type in some of the examples
and try to follow along. Please don't throw a book this large at anyone in anger.

This book introduces Maven by developing some real examples and walking you through the structure
of those examples providing motivation and explanation along the way.

2. Your Feedback

We didn't write this book so we could send off a Word document to our publisher and go to a launch
party to congratulate ourselves on a job well done. This book isn't "done"; in fact, this book will never
be completely "done". The subject it covers is constantly changing and expanding, and we consider this
work an ongoing conversation with the community. Publishing the book means that the real work has
just begun, and you, as a reader, play a pivotal role to helping to maintain and improve this book. If
you see something in this book that is wrong: a spelling mistake, some bad code, a blatant lie, then you
should tell us, send us an email at: book@sonatype.com2.

1 http://www.sonatype.com
2 mailto:tobrien@sonatype.com

http://www.sonatype.com
mailto:tobrien@sonatype.com
http://www.sonatype.com
mailto:tobrien@sonatype.com

xvi

The ongoing relevance of this book depends upon your feedback. We want to know what works and
what doesn't work. We want to know if there is any information you couldn't understand. We especially
want to know if you think that the book is awful. Positive or negative comments are all welcome. Of
course, we reserve the right to disagree, but all feedback will be rewarded with a gracious response.

3. Font Conventions
This book follows certain conventions for font usage. Understanding these conventions up-front makes
it easier to use this book.

Italic

Used for filenames, file extensions, URLs, application names, emphasis, and new terms when
they are first introduced.

Constant width

Used for Java class names, methods, variables, properties, data types, database elements, and
snippets of code that appear in text.

Constant width bold
Used for commands you enter at the command line and to highlight new code inserted in a running
example.

Constant width italic

Used to annotate output.

4. Maven Writing Conventions
The book follows certain conventions for naming and font usage in relation to Apache Maven.
Understanding these conventions up-front makes it easier to read this book.

Compiler plugin
Maven plugins are capitalized.

create goal
Maven goal names are displayed in a constant width font.

"plugin"
While "plug-in" (with hyphen) would be the grammatically correct form, this book writes the
term as "plugin" both because it is easier to read and write and because it is a standard throughout
the Maven community.

Maven Lifecycle, Maven Standard Directory Layout, Maven Plugin, Project Object Model
Core Maven concepts are capitalized whenever they are being referenced in the text.

goalParameter

A Maven goal parameter is displayed in a constant width font.

xvii

compile phase
Lifecycle phases are displayed in a constant width font.

5. Acknowledgements
Sonatype would like to thank the following contributors. The people listed below have provided
feedback which has helped improve the quality of this book. Thanks to Raymond Toal, Steve Daly, Paul
Strack, Paul Reinerfelt, Chad Gorshing, Marcus Biel, Brian Dols, Mangalaganesh Balasubramanian,
Marius Kruger, Chris Maki, Matthew McCollough, Matt Raible, and Mark Stewart. Special thanks to
Joel Costigliola for helping to debug and correct the Spring web chapter. Stan Guillory was practically a
contributing author given the number of corrections he posted to the book's Get Satisfaction. Thank you
Stan. Special thanks to Richard Coasby of Bamboo for acting as the provisional grammar consultant.

Thanks to our contributing authors including Eric Redmond.

Thanks to the following contributors who reported errors either in an email or using the Get Satisfaction
site: Paco Soberón, Ray Krueger, Steinar Cook, Henning Saul, Anders Hammar, "george_007",
"ksangani", Niko Mahle, Arun Kumar, Harold Shinsato, "mimil", "-thrawn-", Matt Gumbley. If you see
your Get Satisfaction username in this list, and you would like it replaced with your real name, send
an email to book@sonatype.com3.

Special thanks to Grant Birchmeier for taking the time to proofread portions of the book and file
extremely detailed feedback via GetSatisfaction.

3 mailto:book@sonatype.com

mailto:book@sonatype.com
mailto:book@sonatype.com

Chapter 1. Introducing Apache Maven
This book is an introduction to Apache Maven which uses a set of examples to demonstrate core
concepts. Starting with a simple Maven project which contains a single class and a single unit test, this
book slowly develops an enterprise multi-module project which interacts with a database, interacts with
a remote API, and presents a simple web application.

1.1. Maven... What is it?

The answer to this question depends on your own perspective. The great majority of Maven users are
going to call Maven a “build tool”: a tool used to build deployable artifacts from source code. Build
engineers and project managers might refer to Maven as something more comprehensive: a project
management tool. What is the difference? A build tool such as Ant is focused solely on preprocessing,
compilation, packaging, testing, and distribution. A project management tool such as Maven provides
a superset of features found in a build tool. In addition to providing build capabilities, Maven can also
run reports, generate a web site, and facilitate communication among members of a working team.

A more formal definition of Apache Maven1: Maven is a project management tool which encompasses
a project object model, a set of standards, a project lifecycle, a dependency management system, and
logic for executing plugin goals at defined phases in a lifecycle. When you use Maven, you describe
your project using a well-defined project object model, Maven can then apply cross-cutting logic from
a set of shared (or custom) plugins.

Don't let the fact that Maven is a "project management" tool scare you away. If you were just looking
for a build tool, Maven will do the job. In fact, the first few chapters of this book will deal with the most
common use case: using Maven to build and distribute your project.

1.2. Convention Over Configuration

Convention over configuration is a simple concept. Systems, libraries, and frameworks should assume
reasonable defaults. Without requiring unnecessary configuration, systems should "just work". Popular
frameworks such as Ruby on Rails2 and EJB3 have started to adhere to these principles in reaction to
the configuration complexity of frameworks such as the initial EJB 2.1 specifications. An illustration of
convention over configuration is something like EJB3 persistence: all you need to do to make a particular
bean persistent is to annotate that class with @Entity. The framework assumes table and column
names based on the name of the class and the names of the properties. Hooks are provided for you to
override these default, assumed names if the need arises, but, in most cases, you will find that using the
framework-supplied defaults results in a faster project execution.

1 http://maven.apache.org
2 http://www.rubyonrails.org/

http://maven.apache.org
http://www.rubyonrails.org/
http://maven.apache.org
http://www.rubyonrails.org/

2

Maven incorporates this concept by providing sensible default behavior for projects. Without
customization, source code is assumed to be in ${basedir}/src/main/java and resources are
assumed to be in ${basedir}/src/main/resources. Tests are assumed to be in ${basedir}/
src/test, and a project is assumed to produce a JAR file. Maven assumes that you want the compile
byte code to ${basedir}/target/classes and then create a distributable JAR file in ${basedir}/
target. While this might seem trivial, consider the fact that most Ant-based builds have to define the
locations of these directories. Ant doesn't ship with any built-in idea of where source code or resources
might be in a project; you have to supply this information. Maven's adoption of convention over
configuration goes farther than just simple directory locations, Maven's core plugins apply a common
set of conventions for compiling source code, packaging distributions, generating web sites, and many
other processes. Maven's strength comes from the fact that it is "opinionated", it has a defined life-
cycle and a set of common plugins that know how to build and assemble software. If you follow the
conventions, Maven will require almost zero effort - just put your source in the correct directory, and
Maven will take care of the rest.

One side-effect of using systems that follow "convention over configuration" is that end-users might
feel that they are forced to use a particular methodology or approach. While it is certainly true that
Maven has some core opinions that shouldn't be challenged, most of the defaults can be customized.
For example, the location of a project's source code and resources can be customized, names of JAR
files can be customized, and through the development of custom plugins, almost any behavior can be
tailored to your specific environment's requirements. If you don't care to follow convention, Maven will
allow you to customize defaults in order to adapt to your specific requirements.

1.. A Common Interface

Before Maven provided a common interface for building software, every single project had someone
dedicated to managing a fully customized build system. Developers had to take time away from
developing software to learn about the idiosyncrasies of each new project they wanted to contribute to.
In 2001, you'd have a completely different approach to building a project like Turbine3 than you would
to building a project like Tomcat4. If a new source code analysis tool came out that would perform static
analysis on source code, or if someone developed a new unit testing framework, everybody would have
to drop what they were doing and figure out how to fit it into each project's custom build environment.
How do you run unit tests? There were a thousand different answers. This environment was characterized
by a thousand endless arguments about tools and build procedures. The age before Maven was an age
of inefficiency, the age of the "Build Engineer".

Today, most open source developers have used or are currently using Maven to manage new software
projects. This transition is less about developers moving from one build tool to another and more about
developers starting to adopt a common interface for project builds. As software systems have become
more modular, build systems have become more complex, and the number of projects has sky-rocketed.

3 http://turbine.apache.org/
4 http://tomcat.apache.org

http://turbine.apache.org/
http://tomcat.apache.org
http://turbine.apache.org/
http://tomcat.apache.org

3

Before Maven, when you wanted to check out a project like Apache ActiveMQ5 or Apache ServiceMix6

from Subversion and build it from source, you really had to set aside about an hour to figure out the
build system for each particular project. What does the project need to build? What libraries do I need
to download? Where do I put them? What goals can I execute in the build? In the best case, it took
a few minutes to figure out a new project's build, and in the worst cases (like the old Servlet API
implementation in the Jakarta Project), a project's build was so difficult it would take multiple hours
just to get to the point where a new contributor could edit source and compile the project. These days,
you check it out from source, and you run mvn install.

While Maven provides an array of benefits including dependency management and reuse of common
build logic through plugins, the core reason why it has succeeded is that it has defined a common
interface for building software. When you see that a project like Apache ActiveMQ7 uses Maven, you
can assume that you'll be able to check it out from source and build it with mvn install without much
hassle. You know where the ignition keys goes, you know that the gas pedal is on the right-side, and
the brake is on the left.

1.4. Universal Reuse through Maven Plugins

The core of Maven is pretty dumb, it doesn't know how to do much beyond parsing a few XML
documents and keeping track of a lifecycle and a few plugins. Maven has been designed to delegate
most responsibility to a set of Maven Plugins which can affect the Maven Lifecycle and offer access
to goals. Most of the action in Maven happens in plugin goals which take care of things like compiling
source, packaging bytecode, publishing sites, and any other task which need to happen in a build. The
Maven you download from Apache doesn't know much about packaging a WAR file or running JUnit
tests; most of the intelligence of Maven is implemented in the plugins and the plugins are retrieved from
the Maven Repository. In fact, the first time you ran something like mvn install with a brand-new
Maven installation it retrieved most of the core Maven plugins from the Central Maven Repository. This
is more than just a trick to minimize the download size of the Maven distribution, this is behavior which
allows you to upgrade a plugin to add capability to your project's build. The fact that Maven retrieves
both dependencies and plugins from the remote repository allows for universal reuse of build logic.

The Maven Surefire plugin is the plugin that is responsible for running unit tests. Somewhere between
version 1.0 and the version that is in wide use today someone decided to add support for the TestNG
unit testing framework in addition to the support for JUnit. This upgrade happened in a way that didn't
break backwards compatibility. If you were using the Surefire plugin to compile and execute JUnit 3
unit tests, and you upgraded to the most recent version of the Surefire plugin, your tests continued to
execute without fail. But, you gained new functionality, if you want to execute unit tests in TestNG you
now have that ability. You also gained the ability to run annotated JUnit 4 unit tests. You gained all
of these capabilities without having to upgrade your Maven installation or install new software. Most

5 http://activemq.apache.org
6 http://servicemix.apache.org
7 http://wicket.apache.org

http://activemq.apache.org
http://servicemix.apache.org
http://wicket.apache.org
http://activemq.apache.org
http://servicemix.apache.org
http://wicket.apache.org

4

importantly, nothing about your project had to change aside from a version number for a plugin a single
Maven configuration file called the Project Object Model (POM).

It is this mechanism that affects much more than the Surefire plugin. Maven has plugins for everything
from compiling Java code, to generating reports, to deploying to an application server. Maven has
abstracted common build tasks into plugins which are maintained centrally and shared universally. If
the state-of-the-art changes in any area of the build, if some new unit testing framework is released or
if some new tool is made available, you don't have to be the one to hack your project's custom build
system to support it. You benefit from the fact that plugins are downloaded from a remote repository
and maintained centrally. This is what is meant by universal reuse through Maven plugins.

1.5. Conceptual Model of a "Project"

Maven maintains a model of a project. You are not just compiling source code into bytecode, you are
developing a description of a software project and assigning a unique set of coordinates to a project. You
are describing the attributes of the project. What is the project's license? Who develops and contributes
to the project? What other projects does this project depend upon? Maven is more than just a "build
tool", it is more than just an improvement on tools like make and Ant, it is a platform that encompasses
a new semantics related to software projects and software development. This definition of a model for
every project enables such features as:

Dependency Management
Because a project is defined by a unique set of coordinates consisting of a group identifier, an
artifact identifier, and a version, projects can now use these coordinates to declare dependencies.

Remote Repositories
Related to dependency management, we can use the coordinates defined in the Maven Project
Object Model (POM) to create repositories of Maven artifacts.

Universal Reuse of Build Logic
Plugins contain logic that works with the descriptive data and configuration parameters defined
in Project Object Model (POM); they are not designed to operate upon specific files in known
locations.

Tool Portability / Integration
Tools like Eclipse, NetBeans, and IntelliJ now have a common place to find information about a
project. Before the advent of Maven, every IDE had a different way to store what was essentially
a custom Project Object Model (POM). Maven has standardized this description, and while each
IDE continues to maintain custom project files, they can be easily generated from the model.

Easy Searching and Filtering of Project Artifacts
Tools like Nexus allow you to index and search the contents of a repository using the information
stored in the POM.

5

1.6. Is Maven an alternative to XYZ?

So, sure, Maven is an alternative to Ant, but Apache Ant8 continues to be a great, widely-used tool. It
has been the reigning champion of Java builds for years, and you can integrate Ant build scripts with
your project's Maven build very easily. This is a common usage pattern for a Maven project. On the
other hand, as more and more open source projects move to Maven as a project management platform,
working developers are starting to realize that Maven not only simplifies the task of build management,
it is helping to encourage a common interface between developers and software projects. Maven is more
of a platform than a tool, while you could consider Maven an alternative to Ant, you are comparing
apples to oranges. "Maven" includes more than just a build tool.

This is the central point that makes all of the Maven vs. Ant, Maven vs. Buildr, Maven vs. Gradle
arguments irrelevant. Maven isn't totally defined by the mechanics of your build system. It isn't about
scripting the various tasks in your build as much as it is about encouraging a set of standards, a common
interface, a life-cycle, a standard repository format, a standard directory layout, etc. It certainly isn't
about what format the POM happens to be in (XML vs. YAML vs. Ruby). Maven is much larger than
that, and Maven refers to much more than the tool itself. When this book talks of Maven, it is referring
to the constellation of software, systems, and standards that support it. Buildr, Ivy, Gradle, all of these
tools interact with the repository format that Maven helped create, and you could just as easily use a
repository manager like Nexus to support a build written entirely in Ant.

While Maven is an alternative to many of these tools, the community needs to evolve beyond
seeing technology as a zero-sum game between unfriendly competitors in a competition for users and
developers. This might be how large corporations relate to one another, but it has very little relevance
to the way that open source communities work. The headline "Who's winning? Ant or Maven?" isn't
very constructive. If you force us to answer this question, we're definitely going to say that Maven is a
superior alternative to Ant as a foundational technology for a build; at the same time, Maven's boundaries
are constantly shifting and the Maven community is constantly trying to seek out new ways to become
more ecumenical, more inter-operable, more cooperative. The core tenets of Maven are declarative
builds, dependency management, repository managers, universal reuse through plugins, but the specific
incarnation of these ideas at any given moment is less important than the sense that the open source
community is collaborating to reduce the inefficiency of "enterprise-scale builds".

1.. Comparing Maven with Ant

The authors of this book have no interest in creating a feud between Apache Ant and Apache Maven,
but we are also cognizant of the fact that most organizations have to make a decision between the two
standard solutions: Apache Ant and Apache Maven. In this section, we compare and contrast the tools.

Ant excels at build process, it is a build system modeled after make with targets and dependencies. Each
target consists of a set of instructions which are coded in XML. There is a copy task and a javac task

8 http://ant.apache.org

http://ant.apache.org
http://ant.apache.org

6

as well as a jar task. When you use Ant, you supply Ant with specific instructions for compiling and
packaging your output. Look at the following example of a simple build.xml file:

Example 1.1. A Simple Ant build.xml file

<project name="my-project" default="dist" basedir=".">
 <description>
 simple example build file
 </description>
 <!-- set global properties for this build -->
 <property name="src" location="src/main/java"/>
 <property name="build" location="target/classes"/>
 <property name="dist" location="target"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init"
 description="compile the source " >
 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="dist" depends="compile"
 description="generate the distribution" >
 <!-- Create the distribution directory -->
 <mkdir dir="${dist}/lib"/>

 <!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
 <jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>
 </target>

 <target name="clean"
 description="clean up" >
 <!-- Delete the ${build} and ${dist} directory trees -->
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

In this simple Ant example, you can see how you have to tell Ant exactly what to do. There is a compile
goal which includes the javac task that compiles the source in the src/main/java directory to the
target/classes directory. You have to tell Ant exactly where your source is, where you want the
resulting bytecode to be stored, and how to package this all into a JAR file. While there are some recent
developments that help make Ant less procedural, a developer's experience with Ant is in coding a
procedural language written in XML.

7

Contrast the previous Ant example with a Maven example. In Maven, to create a JAR file from some
Java source, all you need to do is create a simple pom.xml, place your source code in ${basedir}/
src/main/java and then run mvn install from the command line. The example Maven pom.xml
that achieves the same results as the simple Ant file listed in Example 1.1, “A Simple Ant build.xml
file” is shown in Example 1.2, “A Sample Maven pom.xml”.

Example 1.2. A Sample Maven pom.xml

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0</version>
</project>

That's all you need in your pom.xml. Running mvn install from the command line will process
resources, compile source, execute unit tests, create a JAR, and install the JAR in a local repository for
reuse in other projects. Without modification, you can run mvn site and then find an index.html
file in target/site that contains links to JavaDoc and a few reports about your source code.

Admittedly, this is the simplest possible example project containing nothing more than some source
code and producing a simple JAR. It is a project which closely follows Maven conventions and doesn't
require any dependencies or customization. If we wanted to start customizing the behavior, our pom.xml
is going to grow in size, and in the largest of projects you can see collections of very complex Maven
POMs which contain a great deal of plugin customization and dependency declarations. But, even when
your project's POM files become more substantial, they hold an entirely different kind of information
from the build file of a similarly sized project using Ant. Maven POMs contain declarations: "This is a
JAR project", and "The source code is in src/main/java". Ant build files contain explicit instructions:
"This is project", "The source is in src/main/java", "Run javac against this directory", "Put the results
in target/classes", "Create a JAR from the", etc. Where Ant had to be explicit about the process,
there was something "built-in" to Maven that just knew where the source code was and how it should
be processed.

The differences between Ant and Maven in this example are:

Apache Ant

• Ant doesn't have formal conventions like a common project directory structure or default
behavior. You have to tell Ant exactly where to find the source and where to put the output.
Informal conventions have emerged over time, but they haven't been codified into the product.

• Ant is procedural. You have to tell Ant exactly what to do and when to do it. You have to tell
it to compile, then copy, then compress.

• Ant doesn't have a lifecycle. You have to define goals and goal dependencies. You have to
attach a sequence of tasks to each goal manually.

8

Apache Maven

• Maven has conventions. It knows where your source code is because you followed the
convention. Maven's Compiler plugin put the bytecode in target/classes, and it produces
a JAR file in target.

• Maven is declarative. All you had to do was create a pom.xml file and put your source in the
default directory. Maven took care of the rest.

• Maven has a lifecycle which was invoked when you executed mvn install. This command
told Maven to execute a series of sequential lifecycle phases until it reached the install lifecycle
phase. As a side-effect of this journey through the lifecycle, Maven executed a number of
default plugin goals which did things like compile and create a JAR.

Maven has built-in intelligence about common project tasks in the form of Maven plugins. If you wanted
to write and execute unit tests, all you would need to do is write the tests, place them in ${basedir}/
src/test/java, add a test-scoped dependency on either TestNG or JUnit, and run mvn test. If you
wanted to deploy a web application and not a JAR, all you would need to do is change your project type
to war and put your docroot in ${basedir}/src/main/webapp. Sure, you can do all of this with Ant,
but you will be writing the instructions from scratch. In Ant, you would first have to figure out where
the JUnit JAR file should be. Then you would have to create a classpath that includes the JUnit JAR
file. Then you would tell Ant where it should look for test source code, write a goal that compiles the
test source to bytecode, and execute the unit tests with JUnit.

Without supporting technologies like antlibs and Ivy (even with these supporting technologies), Ant has
the feeling of a custom procedural build. An efficient set of Maven POMs in a project which adheres
to Maven's assumed conventions has surprisingly little XML compared to the Ant alternative. Another
benefit of Maven is the reliance on widely-shared Maven plugins. Everyone uses the Maven Surefire
plugin for unit testing, and if someone adds support for a new unit testing framework, you can gain new
capabilities in your own build by just incrementing the version of a particular Maven plugin in your
project's POM.

The decision to use Maven or Ant isn't a binary one, and Ant still has a place in a complex build. If
your current build contains some highly customized process, or if you've written some Ant scripts to
complete a specific process in a specific way that cannot be adapted to the Maven standards, you can
still use these scripts with Maven. Ant is made available as a core Maven plugin. Custom Maven plugins
can be implemented in Ant, and Maven projects can be configured to execute Ant scripts within the
Maven project lifecycle.

Chapter 2. Installing Maven
This chapter contains very detailed instructions for installing Maven on a number of different platforms.
Instead of assuming a level of familiarity with installing software and setting environment variables,
we've opted to be as thorough as possible to minimize any problems that might arise do to a partial
installation. The only thing this chapter assumes is that you've already installed a suitable Java
Development Kit (JDK). If you are just interested in installation, you can move on to the rest of the book
after reading through Downloading Maven and Installing Maven. If you are interested in the details of
your Maven installation, this entire chapter will give you an overview of what you've installed and the
meaning of the Apache Software License, Version 2.0.

2.1. Verify your Java Installation

While Maven can run on Java 1.4, this book assumes that you are running at least Java 5. Go with the
most recent stable Java Development Kit (JDK) available for your operating system. Either Java 5 or
Java 6 will work with all of the examples in this book.

% java -version
java version "1.5.0_16"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b06-284)
Java HotSpot(TM) Client VM (build 1.5.0_16-133, mixed mode, sharing)

Maven works with all certified JavaTM compatible development kits, and a few non-certified
implementations of Java. The examples in this book were written and tested against the official Java
Development Kit releases downloaded from the Sun Microsystems web site. If you’re working with
a Linux distribution, you may need to download Sun’s JDK yourself and make sure it’s the version
you’re invoking (by running java -version). Now that Sun has open-sourced Java, this will hopefully
improve in the future, and we’ll get the Sun JRE and JDK by default even in purist Linux distributions.
Until that day, you may need to do some of your own downloading.

2.2. Downloading Maven

You can download Maven from the Apache Maven project website at http://maven.apache.org/
download.html.

When downloading Maven, make sure you choose the latest version of Apache Maven from the Maven
website. The latest version of Maven when this book was written was Maven 2.2.1. If you are not
familiar with the Apache Software License, you should familiarize yourself with the terms of the license
before you start using the product. More information on the Apache Software License can be found in
Section 2.8, “About the Apache Software License”.

http://maven.apache.org/download.html
http://maven.apache.org/download.html

10

2.3. Installing Maven
There are wide differences between operating systems such as Mac OS X and Microsoft Windows, and
there are subtle differences between different versions of Windows. Luckily, the process of installing
Maven on all of these operating systems is relatively painless and straightforward. The following
sections outline the recommended best-practice for installing Maven on a variety of operating systems.

2.3.1. Installing Maven on Mac OSX

You can download a binary release of Maven from http://maven.apache.org/download.html. Download
the current release of Maven in a format that is convenient for you to work with. Pick an appropriate
place for it to live, and expand the archive there. If you expanded the archive into the directory /usr/
local/apache-maven-2.2.1, you may want to create a symbolic link to make it easier to work with
and to avoid the need to change any environment configuration when you upgrade to a newer version:

/usr/local % cd /usr/local
/usr/local % ln -s apache-maven-2.2.1 maven
/usr/local % export M2_HOME=/usr/local/maven
/usr/local % export PATH=${M2_HOME}/bin:${PATH}

Once Maven is installed, you need to do a couple of things to make it work correctly. You need to add its
bin directory in the distribution (in this example, /usr/local/maven/bin) to your command path.
You also need to set the environment variable M2_HOME to the top-level directory you installed (in this
example, /usr/local/maven).

Note
Installation instructions are the same for both OSX Tiger and OSX Leopard. It has been
reported that Maven 2.0.6 is shipping with a preview release of XCode. If you have
installed XCode, run mvn from the command-line to check availability. XCode installs
Maven in /usr/share/maven. We recommend installing the most recent version of
Maven 2.2.1 as there have been a number of critical bug fixes and improvements since
Maven 2.0.6 was released.

You'll need to add both M2_HOME and PATH to a script that will run every time you login. To do this,
add the following lines to .bash_login.

export M2_HOME=/usr/local/maven
export PATH=${M2_HOME}/bin:${PATH}

Once you've added these lines to your own environment, you will be able to run Maven from the
command line.

Note
These installation instructions assume that you are running bash.

http://maven.apache.org/download.html

11

2.3.1.1. Installing Maven on OSX using MacPorts

If you are using MacPorts, you can install the maven2 port by executing the following command-line:

$ sudo port install maven2
Password: ******
---> Fetching maven2
---> Attempting to fetch apache-maven-2.2.1-bin.tar.bz2
 from http://www.apache.org/dist/maven/binaries
---> Verifying checksum(s) for maven2
---> Extracting maven2
---> Configuring maven2
---> Building maven2 with target all
---> Staging maven2 into destroot
---> Installing maven2 2.2.1_0
---> Activating maven2 2.2.1_0
---> Cleaning maven2

For more information about the maven2 port, see the maven2 Portfile1. For more information about
MacPorts and how to install it, see the MacPorts project page2.

2.3.2. Installing Maven on Microsoft Windows

Installing Maven on Windows is very similar to installing Maven on Mac OSX, the main differences
being the installation location and the setting of an environment variable. This book assumes a Maven
installation directory of c:\Program Files\apache-maven-2.2.1, but it won't make a difference if
you install Maven in another directory as long as you configure the proper environment variables. Once
you've unpacked Maven to the installation directory, you will need to set two environment variables
—PATH and M2_HOME. To set these environment variables from the command-line, type in the following
commands:

C:\Users\tobrien > set M2_HOME=c:\Program Files\apache-maven-2.2.1
C:\Users\tobrien > set PATH=%PATH%;%M2_HOME%\bin

Setting these environment variables on the command-line will allow you to run Maven in your current
session, but unless you add them to the System environment variables through the control panel, you'll
have to execute these two lines every time you log into your system. You should modify both of these
variables through the Control Panel in Microsoft Windows.

2.3.3. Installing Maven on Linux

To install Maven on a Linux machine follow the exact procedure outlined in Section 2.3.1, “Installing
Maven on Mac OSX”.

1 http://trac.macports.org/browser/trunk/dports/java/maven2/Portfile
2 http://www.macports.org/index.php

http://trac.macports.org/browser/trunk/dports/java/maven2/Portfile
http://www.macports.org/index.php
http://trac.macports.org/browser/trunk/dports/java/maven2/Portfile
http://www.macports.org/index.php

12

2.3.4. Installing Maven on FreeBSD or OpenBSD

To install Maven on a FreeBSD or OpenBSD machine, follow the exact procedure outlined in
Section 2.3.1, “Installing Maven on Mac OSX”.

2.4. Testing a Maven Installation
Once Maven is installed, you can check the version by running mvn -v from the command-line. If
Maven has been installed, you should see something resembling the following output.

$ mvn -v
Apache Maven 2.2.0 (r788681; 2009-06-26 08:04:01-0500)
Java version: 1.5.0_19
Java home: /System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home
Default locale: en_US, platform encoding: MacRoman
OS name: "mac os x" version: "10.5.7" arch: "i386" Family: "unix"

If you see this output, you know that Maven is available and ready to be used. If you do not see this
output, and your operating system cannot find the mvn command, make sure that your PATH environment
variable and M2_HOME environment variable have been properly set.

2.5. Maven Installation Details
Maven's download measures in at roughly 1.5 MiB3, it has attained such a slim download size because
the core of Maven has been designed to retrieve plugins and dependencies from a remote repository on-
demand. When you start using Maven, it will start to download plugins to a local repository described in
Section 2.5.1, “User-specific Configuration and Repository”. In case you are curious, let's take a quick
look at what is in Maven's installation directory.3

/usr/local/maven $ ls -p1
LICENSE.txt
NOTICE.txt
README.txt
bin/
boot/
conf/
lib/

LICENSE.txt contains the software license for Apache Maven. This license is described in some
detail later in the section Section 2.8, “About the Apache Software License”. NOTICE.txt contains
some notices and attributions required by libraries that Maven depends on. README.txt contains some
installation instructions. bin/ contains the mvn script that executes Maven. boot/ contains a JAR file

3Ever purchased a 200 GB hard drive only to realize that it showed up as less than 200 GiB when you installed it? Computers
understand Gibibytes, but retailers sell products using Gigabytes. MiB stands for Mebibyte which is defined as 220 or 10242.
These binary prefix standards are endorsed by the IEEE, CIPM, and and IEC. For more information about Kibibytes, Mebibytes,
Gibibytes, and Tebibytes see http://en.wikipedia.org/wiki/Mebibyte,

http://en.wikipedia.org/wiki/Mebibyte

13

(classwords-1.1.jar) that is responsible for creating the Class Loader in which Maven executes.
conf/ contains a global settings.xml that can be used to customize the behavior of your Maven
installation. If you need to customize Maven, it is customary to override any settings in a settings.xml
file stored in ~/.m2. lib/ contains a single JAR file (maven-core-2.2.1-uber.jar) that contains
the core of Maven.

Note

Unless you are working in a shared Unix environment, you should avoid customizing the
settings.xml in M2_HOME/conf. Altering the global settings.xml file in the Maven
installation itself is usually unnecessary and it tends to complicate the upgrade procedure
for Maven as you'll have to remember to copy the customized settings.xml from the
old Maven installation to the new installation. If you need to customize settings.xml,
you should be editing your own settings.xml in ~/.m2/settings.xml.

2.5.1. User-specific Configuration and Repository

Once you start using Maven extensively, you'll notice that Maven has created some local user-specific
configuration files and a local repository in your home directory. In ~/.m2 there will be:

~/.m2/settings.xml
A file containing user-specific configuration for authentication, repositories, and other
information to customize the behavior of Maven.

~/.m2/repository/
This directory contains your local Maven repository. When you download a dependency from a
remote Maven repository, Maven stores a copy of the dependency in your local repository.

Note

In Unix (and OSX), your home directory will be referred to using a tilde (i.e. ~/bin
refers to /home/tobrien/bin). In Windows, we will also be using ~ to refer to your
home directory. In Windows XP, your home directory is C:\Documents and Settings
\tobrien, and in Windows Vista, your home directory is C:\Users\tobrien. From
this point forward, you should translate paths such as ~/m2 to your operating system's
equivalent.

2.5.2. Upgrading a Maven Installation

If you've installed Maven on a Mac OSX or Unix machine according to the details in Section 2.3.1,
“Installing Maven on Mac OSX” and Section 2.3.3, “Installing Maven on Linux”, it should be
easy to upgrade to newer versions of Maven when they become available. Simply install the newer
version of Maven (/usr/local/maven-2.future) next to the existing version of Maven (/usr/
local/maven-2.2.1). Then switch the symbolic link /usr/local/maven from /usr/local/

14

maven-2.2.1 to /usr/local/maven-2.future. Since, you've already set your M2_HOME variable
to point to /usr/local/maven, you won't need to change any environment variables.

If you have installed Maven on a Windows machine, simply unpack Maven to c:\Program Files
\maven-2.future and update your M2_HOME variable.

Note

If you have any customizations to the global settings.xml in M2_HOME/conf, you will
need to copy this settings.xml to the conf directory of the new Maven installation.

2.5.3. Upgrading from Maven 1.x to Maven 2.x

If you are upgrading from Maven 1 to Maven 2, you are going to be using an entirely new POM
and repository structure. If you have already created a custom Maven 1 repository to hold custom
artifacts, you can use the Nexus Repository Manager to expose a Maven 1 repository in a format that
can be understood by Maven 2 clients. For more information about the Nexus Repository Manager, see
Repository Management with Nexus4. In addition to tools like Nexus, you can also configure
references to repositories to use the legacy layout format.

If you have a set of Maven 1 projects, you may want to know about the Maven One Plugin. The Maven
One Plugin was designed to help projects migrate from Maven 1 to Maven 2. If you have a Maven 1
project, you can convert the project's POM by running the one:convert goal as follows:

$ cd my-project
$ mvn one:convert

one:convert will read a project.xml and produce a pom.xml that is compatible with Maven 2. If
you've customized a Maven 1 build using Jelly script in a maven.xml file, you will need to investigate
other options. While Maven 1 emphasized Jelly scripting for customizing builds, Maven 2 favors custom
plugins or customization through scripting Plugins or the Maven Antrun Plugin.

The most important thing to know about when upgrading from Maven 1 to Maven 2 is that Maven 2 is
a completely different build framework. Maven 2 introduces the concept of the Maven Lifecycle and
redefines the relationships between plugins. If you upgrade from Maven 1 to Maven 2, you need to
invest some time in learning about the differences between the two versions. Although it might seem
straightforward to start learning about the new POM structure, you should focus on the Lifecycle first.
If you understand the Maven Lifecycle, you will be able to use Maven to its fullest potential.

2.6. Uninstalling Maven
Most of the installation instructions involve unpacking of the Maven distribution archive in a directory
and setting of various environment variables. If you need to remove Maven from your computer, all you

4 http://www.sonatype.com/books/nexus-book/reference/

http://www.sonatype.com/books/nexus-book/reference/
http://www.sonatype.com/books/nexus-book/reference/

15

need to do is delete your Maven installation directory and remove the environment variables. You will
also want to delete the ~/.m2 directory as it contains your local repository.

2.7. Getting Help with Maven
While this book aims to be a comprehensive reference, there are going to be topics we will miss and
special situations and tips which are not covered. While the core of Maven is very simple, the real work
in Maven happens in the plugins, and there are too many plugins available to cover them all in one book.
You are going to encounter problems and features which have not been covered in this book; in these
cases, we suggest searching for answers at the following locations:

http://maven.apache.org
This will be the first place to look, the Maven web site contains a wealth of information and
documentation. Every plugin has a few pages of documentation and there are a series of "quick
start" documents which will be helpful in addition to the content of this book. While the Maven
site contains a wealth of information, it can also be a frustrating, confusing, and overwhelming.
There is a custom Google search box on the main Maven page that will search known Maven
sites for information. This provides better results than a generic Google search.

Maven User Mailing List
The Maven User mailing list is the place for users to ask questions. Before you ask a question on
the user mailing list, you will want to search for any previous discussion that might relate to your
question. It is bad form to ask a question that has already been asked without first checking to
see if an answer already exists in the archives. There are a number of useful mailing list archive
browsers, we've found Nabble to the be the most useful. You can browse the User mailing list
archives here: http://www.nabble.com/Maven---Users-f178.html. You can join the user mailing
list by following the instructions available here http://maven.apache.org/mail-lists.html.

http://www.sonatype.com
Sonatype maintains an online copy of this book and other tutorials related to Apache Maven.

2.8. About the Apache Software License
Apache Maven is released under the Apache Software License, Version 2.0. If you want to read this
license, you can read ${M2_HOME}/LICENSE.txt or read this license on the Open Source Initiative's
web site here: http://www.opensource.org/licenses/apache2.0.php.

There's a good chance that, if you are reading this book, you are not a lawyer. If you are wondering what
the Apache License, Version 2.0 means, the Apache Software Foundation has assembled a very helpful
Frequently Asked Questions (FAQ) page about the license available here: http://www.apache.org/
foundation/licence-FAQ.html. Here's is the answer to the question "I am not a lawyer. What does it all
mean?"

[This license] allows you to:

http://maven.apache.org
http://www.nabble.com/Maven---Users-f178.html
http://maven.apache.org/mail-lists.html
http://www.sonatype.com
http://www.opensource.org/licenses/apache2.0.php
http://www.apache.org/foundation/licence-FAQ.html
http://www.apache.org/foundation/licence-FAQ.html

16

• freely download and use Apache software, in whole or in part, for personal,
company internal, or commercial purposes;

• use Apache software in packages or distributions that you create.

It forbids you to:

• redistribute any piece of Apache-originated software without proper attribution;

• use any marks owned by The Apache Software Foundation in any way that might
state or imply that the Foundation endorses your distribution;

• use any marks owned by The Apache Software Foundation in any way that might
state or imply that you created the Apache software in question.

It requires you to:

• include a copy of the license in any redistribution you may make that includes
Apache software;

• provide clear attribution to The Apache Software Foundation for any
distributions that include Apache software.

It does not require you to:

• include the source of the Apache software itself, or of any modifications you
may have made to it, in any redistribution you may assemble that includes it;

• submit changes that you make to the software back to the Apache Software
Foundation (though such feedback is encouraged).

This ends the installation information. The next part of the book contains Maven examples.

Chapter 3. A Simple Maven Project
3.1. Introduction
In this chapter, we introduce a simple project created from scratch using the Maven Archetype plugin.
This elementary application provides us with the opportunity to discuss some core Maven concepts
while you follow along with the development of the project.

Before you can start using Maven for complex, multi-module builds, we have to start with the basics.
If you’ve used Maven before, you’ll notice that it does a good job of taking care of the details. Your
builds tend to “just work,” and you only really need to dive into the details of Maven when you want to
customize the default behavior or write a custom plugin. However, when you do need to dive into the
details, a thorough understanding of the core concepts is essential. This chapter aims to introduce you
to the simplest possible Maven project and then presents some of the core concepts that make Maven
a solid build platform. After reading it, you’ll have a fundamental understanding of the build lifecycle,
Maven repositories, dependency management, and the Project Object Model (POM).

3.1.1. Downloading this Chapter's Example

This chapter develops a very simple example which will be used to explore core concepts of Maven. If
you follow the steps described in this chapter, you shouldn't need to download the examples to recreate
the code produced by the Maven. We will be using the Maven Archetype plugin to create this simple
project and this chapter doesn't modify the project in any way. If you would prefer to read this chapter
with the final example source code, this chapter’s example project may be downloaded with the book’s
example code at:

http://www.sonatype.com/books/mvnex-book/mvnexbook-examples-0.3.1-project.zip

Unzip this archive in any directory, and then go to the ch-simple/ directory. There you will see a
directory named simple/ that contains the source code for this chapter.

3.2. Creating a Simple Project
To start a new Maven project, use the Maven Archetype plugin from the command line. Run the
archetype:generate goal, select archetype #15, and then enter "Y" to confirm and generate the new
project:

$ mvn archetype:generate -DgroupId=org.sonatype.mavenbook.simple \
 -DartifactId=simple \
 -DpackageName=org.sonatype.mavenbook \
 -Dversion=1.0-SNAPSHOT
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] --

18

[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:generate] (aggregator-style)
[INFO] --
[INFO] Preparing archetype:generate
[INFO] No goals needed for project - skipping
[INFO] Setting property: velocimacro.messages.on => 'false'.
[INFO] Setting property: resource.loader => 'classpath'.
[INFO] Setting property: resource.manager.logwhenfound => 'false'.
[INFO] [archetype:generate {execution: default-cli}]
[INFO] Generating project in Interactive mode
[INFO] No archetype defined. Using maven-archetype-quickstart \
 (org.apache.maven.archetypes:maven-archetype-quickstart:1.0)
Choose archetype:
...
12: internal -> maven-archetype-mojo (A Maven Java plugin development project)
13: internal -> maven-archetype-portlet (A simple portlet application)
14: internal -> maven-archetype-profiles ()
15: internal -> maven-archetype-quickstart ()
16: internal -> maven-archetype-site-simple (A simple site generation project)
17: internal -> maven-archetype-site (A more complex site project)
18: internal -> maven-archetype-webapp (A simple Java web application)
19: internal -> jini-service-archetype (Archetype for Jini service project creation)
Choose a number: (...) 15: : 15
Confirm properties configuration:
groupId: org.sonatype.mavenbook.simple
artifactId: simple
version: 1.0-SNAPSHOT
package: org.sonatype.mavenbook.simple
 Y: : Y
...
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.simple
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook.simple
[INFO] Parameter: package, Value: org.sonatype.mavenbook.simple
[INFO] Parameter: artifactId, Value: simple
[INFO] Parameter: basedir, Value: /private/tmp
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] BUILD SUCCESSFUL

mvn is the Maven 2 command. archetype:generate is called a Maven goal. If you are familiar with
Apache Ant, a Maven goal is analogous to an Ant target; both describe a unit of work to be completed
in a build. The -Dname=value pairs are arguments that are passed to the goal and take the form of
-D properties, similar to the system property options you might pass to the Java Virtual Machine via
the command line. The purpose of the archetype:generate goal is to quickly create a project from
an archetype. In this context, an archetype is defined as “an original model or type after which other
similar things are patterned; a prototype.”1A number of archetypes are available in Maven for anything
from a simple Swing application to a complex web application, and the archetype:generate offers
a list of approximately 40 archetypes to choose from. In this chapter, we are going to use the most basic
archetype to create a simple skeleton starter project. The plugin is the prefix archetype, and the goal
is generate.

1The American Heritage Dictionary of the English Language.

19

Once we've generated a project, take a look at the directory structure Maven created under the simple
directory:

simple/

simple/pom.xml
 /src/

 /src/main/
 /main/java

 /src/test/
 /test/java

This generated directory adheres to the Maven Standard Directory Layout. We’ll get into more details
later in this chapter, but for now, let’s just try to understand these few basic directories:

The Maven Archetype plugin creates a directory simple/ that matches the artifactId. This is
known as the project’s base directory.
Every Maven project has what is known as a Project Object Model (POM) in a file named
pom.xml. This file describes the project, configures plugins, and declares dependencies.
Our project's source code and resources are placed under src/main. In the case of our simple
Java project this will consist of a few Java classes and some properties file. In another project, this
could be the document root of a web application or configuration files for an application server.
In a Java project, Java classes are placed in src/main/java and classpath resources are placed
in src/main/resources.
Our project's test cases are located in src/test. Under this directory, Java classes such as JUnit
or TestNG tests are placed in src/test/java, and classpath resources for tests are located in
src/test/resources.

The Maven Archetype plugin generated a single class org.sonatype.mavenbook.App, which is a
13-line Java class with a static main function that prints out a message:

package org.sonatype.mavenbook;

/**
 * Hello world!
 *
 */
public class App
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

The simplest Maven archetype generates the simplest possible program: a program which prints "Hello
World!" to standard output.

20

3.3. Building a Simple Project
Once you have created the project with the Maven Archetype plugin by following the directions from
the previous section (Section 3.2, “Creating a Simple Project”) you will want to build and package the
application. To do so, run mvn install from the directory that contains the pom.xml:

$ cd simple
$ mvn install
[INFO] Scanning for projects...
[INFO] --
[INFO] Building simple
[INFO] task-segment: [install]
[INFO] --
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to /simple/target/classes
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Compiling 1 source file to /simple/target/test-classes
[INFO] [surefire:test]
[INFO] Surefire report directory: /simple/target/surefire-reports

 T E S T S

Running org.sonatype.mavenbook.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.105 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] [jar:jar]
[INFO] Building jar: /simple/target/simple-1.0-SNAPSHOT.jar
[INFO] [install:install]
[INFO] Installing /simple/target/simple-1.0-SNAPSHOT.jar to \
 ~/.m2/repository/com/sonatype/maven/simple/simple/1.0-SNAPSHOT/ \
 simple-1.0-SNAPSHOT.jar

You've just created, compiled, tested, packaged, and installed the simplest possible Maven project. To
prove to yourself that this program works, run it from the command line.

$ java -cp target/simple-1.0-SNAPSHOT.jar org.sonatype.mavenbook.App
Hello World!

3.4. Simple Project Object Model
When Maven executes, it looks to the Project Object Model for information about the project. The POM
answers such questions as: What type of project is this? What is the project’s name? Are there any

21

build customizations for this project? Example 3.1, “Simple project's pom.xml file” shows the default
pom.xml file created by the Maven Archetype plugin’s generate goal.

Example 3.1. Simple project's pom.xml file

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.simple</groupId>
 <artifactId>simple</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

This pom.xml file is the most basic POM you will ever deal with for a Maven project, usually a POM
file is considerably more complex: defining multiple dependencies and customizing plugin behavior.
The first few elements—groupId, artifactId, packaging, version—are what is known as the
Maven coordinates which uniquely identify a project. name and url are descriptive elements of the
POM providing a human readable name and associating the project with a web site. The dependencies
element defines a single, test-scoped dependency on a unit testing framework called JUnit. These topics
will be further introduced in Section 3.5, “Core Concepts”, all you need to know, at this point, is that
the pom.xml is the file that makes Maven go.

Maven always executes against an effective POM, a combination of settings from this project's
pom.xml, all parent POMs, a super-POM defined within Maven, user-defined settings, and active
profiles. All projects ultimately extend the super-POM, which defines a set of sensible default
configuration settings. While your project might have a relatively minimal pom.xml, the contents of
your project's POM are interpolated with the contents of all parent POMs, user settings, and any active
profiles. To see this "effective" POM, run the following command in the simple project's base directory.

$ mvn help:effective-pom

When you run this, you should see a much larger POM which exposes the default settings of Maven.
This goal can come in handy if you are trying to debug a build and want to see how all of the current
project's ancestor POMs are contributing to the effective POM.

22

3.5. Core Concepts
Having just run Maven for the first time, it is a good time to introduce a few of the core concepts of
Maven. In the previous example, you generated a project which consisted of a POM and some code
assembled in the Maven standard directory layout. You then executed Maven with a lifecycle phase as
an argument, which prompted Maven to execute a series of Maven plugin goals. Lastly, you installed
a Maven artifact into your local repository. Wait? What is a "lifecycle"? What is a "local repository"?
The following section defines some of Maven's central concepts.

3.5.1. Maven Plugins and Goals

In the previous section, we ran Maven with two different types of command-line arguments. The first
command was a single plugin goal, the generate goal of the Archetype plugin. The second execution
of Maven was a lifecycle phase, install. To execute a single Maven plugin goal, we used the syntax
mvn archetype:generate, where archetype is the identifier of a plugin and generate is the
identifier of a goal. When Maven executes a plugin goal, it prints out the plugin identifier and goal
identifier to standard output:

$ mvn archetype:generate -DgroupId=org.sonatype.mavenbook.simple \
 -DartifactId=simple \
 -DpackageName=org.sonatype.mavenbook
...
[INFO] [archetype:generate]
[INFO] artifact org.apache.maven.archetypes:maven-archetype-quickstart: \
 checking for updates from central
...

A Maven Plugin is a collection of one or more goals. Examples of Maven plugins can be simple
core plugins like the Jar plugin, which contains goals for creating JAR files, Compiler plugin, which
contains goals for compiling source code and unit tests, or the Surefire plugin, which contains goals for
executing unit tests and generating reports. Other, more specialized Maven plugins include plugins like
the Hibernate3 plugin for integration with the popular persistence library Hibernate, the JRuby plugin
which allows you to execute ruby as part of a Maven build or to write Maven plugins in Ruby. Maven
also provides for the ability to define custom plugins. A custom plugin can be written in Java, or a
plugin can be written in any number of languages including Ant, Groovy, beanshell, and, as previously
mentioned, Ruby.

plugin

goal goal goal

Figure 3.1. A Plugin Contains Goals

23

A goal is a specific task that may be executed as a standalone goal or along with other goals as part
of a larger build. A goal is a “unit of work” in Maven. Examples of goals include the compile goal
in the Compiler plugin, which compiles all of the source code for a project, or the test goal of the
Surefire plugin, which can execute unit tests. Goals are configured via configuration properties that
can be used to customize behavior. For example, the compile goal of the Compiler plugin defines a
set of configuration parameters that allow you to specify the target JDK version or whether to use the
compiler optimizations. In the previous example, we passed in the configuration parameters groupId
and artifactId to the generate goal of the Archetype plugin via the command-line parameters -
DgroupId=org.sonatype.mavenbook.simple and -DartifactId=simple. We also passed the
packageName parameter to the generate goal as org.sonatype.mavenbook. If we had omitted the
packageName parameter, the package name would have defaulted to org.sonatype.mavenbook.simple.

Note

When referring to a plugin goal, we frequently use the shorthand notation:
pluginId:goalId. For example, when referring to the generate goal in the Archetype
plugin, we write archetype:generate.

Goals define parameters that can define sensible default values. In the archetype:generate example,
we did not specify what kind of archetype the goal was to create on our command line; we simply passed
in a groupId and an artifactId. Not passing in the type of artifact we wanted to create caused the
generate goal to prompt us for input, the generate goal stopped and asked us to choose an archetype
from a list. If you had run the archetype:create goal instead, Maven would have assumed that
you wanted to generate a new project using the default maven-archetype-quickstart archetype.
This is our first brush with convention over configuration. The convention, or default, for the create
goal is to create a simple project called Quickstart. The create goal defines a configuration property
archetypeArtifactId that has a default value of maven-archetype-quickstart. The Quickstart
archetype generates a minimal project shell that contains a POM and a single class. The Archetype
plugin is far more powerful than this first example suggests, but it is a great way to get new projects
started fast. Later in this book, we’ll show you how the Archetype plugin can be used to generate more
complex projects such as web applications, and how you can use the Archetype plugin to define your
own set of projects.

The core of Maven has little to do with the specific tasks involved in your project’s build. By itself,
Maven doesn’t know how to compile your code or even how to make a JAR file. It delegates all of this
work to Maven plugins like the Compiler plugin and the Jar plugin, which are downloaded on an as-
needed basis and periodically updated from the central Maven repository. When you download Maven,
you are getting the core of Maven, which consists of a very basic shell that knows only how to parse
the command line, manage a classpath, parse a POM file, and download Maven plugins as needed.
By keeping the Compiler plugin separate from Maven’s core and providing for an update mechanism,
Maven makes it easier for users to have access to the latest options in the compiler. In this way, Maven
plugins allow for universal reusability of common build logic. You are not defining the compile task
in a build file; you are using a Compiler plugin that is shared by every user of Maven. If there is an

24

improvement to the Compiler plugin, every project that uses Maven can immediately benefit from this
change. (And, if you don’t like the Compiler plugin, you can override it with your own implementation.)

3.5.2. Maven Lifecycle

The second command we ran in the previous section was mvn install. This command didn’t specify
a plugin goal; instead, it specified a Maven lifecycle phase. A phase is a step in what Maven calls the
“build lifecycle.” The build lifecycle is an ordered sequence of phases involved in building a project.
Maven can support a number of different lifecycles, but the one that’s most often used is the default
Maven lifecycle, which begins with a phase to validate the basic integrity of the project and ends with a
phase that involves deploying a project to production. Lifecycle phases are intentionally vague, defined
solely as validation, testing, or deployment, and they may mean different things to different projects.
For example, in a project that produces a Java archive, the package phase produces a JAR; in a project
that produces a web application, the package phase produces a WAR.

Plugin goals can be attached to a lifecycle phase. As Maven moves through the phases in a lifecycle, it
will execute the goals attached to each particular phase. Each phase may have zero or more goals bound
to it. In the previous section, when you ran mvn install, you might have noticed that more than one
goal was executed. Examine the output after running mvn install and take note of the various goals
that are executed. When this simple example reached the package phase, it executed the jar goal in
the Jar plugin. Since our simple Quickstart project has (by default) a jar packaging type, the jar:jar
goal is bound to the package phase.

package jar:jar

Phases Goals

Figure 3.2. A Goal Binds to a Phase

We know that the package phase is going to create a JAR file for a project with jar packaging. But what
of the goals preceding it, such as compiler:compile and surefire:test? These goals are executed
as Maven steps through the phases preceding package in the Maven lifecycle; executing a phase will
first execute all preceding phases in order, ending with the phase specified on the command line. Each
phase corresponds to zero or more goals, and since we haven’t performed any plugin configuration or
customization, this example binds a set of standard plugin goals to the default lifecycle. The following
goals are executed in order when Maven walks through the default lifecycle ending with package:

resources:resources

The resources goal of the Resources plugin is bound to the process-resources phase. This
goal copies all of the resources from src/main/resources and any other configured resource
directories to the output directory.

25

compiler:compile

The compile goal of the Compiler plugin is bound to the compile phase. This goal compiles
all of the source code from src/main/java or any other configured source directories to the
output directory.

resources:testResources

The testResources goal of the Resources plugin is bound to the process-test-resources
phase. This goal copies all of the resources from src/test/resources and any other
configured test resource directories to a test output directory.

compiler:testCompile

The testCompile goal of the Compiler plugin is bound to the test-compile phase. This goal
compiles test cases from src/test/java and any other configured test source directories to a
test output directory.

surefire:test

The test goal of the Surefire plugin is bound to the test phase. This goal executes all of the
tests and creates output files that capture detailed results. By default, this goal will terminate a
build if there is a test failure.

jar:jar

The jar goal of the Jar plugin is bound to the package phase. This goal packages the output
directory into a JAR file.

26

process-resources resources:resources

Phases Goals

compile compiler:compile

process-classes

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

prepare-package

package jar:jar

Figure 3.3. Bound Goals are Run when Their Phases Execute

To summarize, when we executed mvn install, Maven executes all phases up to the install phase,
and in the process of stepping through the lifecycle phases it executes all goals bound to each phase.
Instead of executing a Maven lifecycle goal you could achieve the same results by specifying a sequence
of plugin goals as follows:

mvn resources:resources \
 compiler:compile \
 resources:testResources \
 compiler:testCompile \
 surefire:test \
 jar:jar \
 install:install

27

It is much easier to execute lifecycle phases than it is to specify explicit goals on the command line, and
the common lifecycle allows every project that uses Maven to adhere to a well-defined set of standards.
The lifecycle is what allows a developer to jump from one Maven project to another without having to
know very much about the details of each particular project's build. If you can build one Maven project,
you can build them all.

3.5.3. Maven Coordinates

The Archetype plugin created a project with a file named pom.xml. This is the Project Object Model
(POM), a declarative description of a project. When Maven executes a goal, each goal has access to the
information defined in a project’s POM. When the jar:jar goal needs to create a JAR file, it looks to
the POM to find out what the JAR file’s name is. When the compiler:compile task compiles Java
source code into bytecode, it looks to the POM to see if there are any parameters for the compile goal.
Goals execute in the context of a POM. Goals are actions we wish to take upon a project, and a project is
defined by a POM. The POM names the project, provides a set of unique identifiers (coordinates) for a
project, and defines the relationships between this project and others through dependencies, parents, and
prerequisites. A POM can also customize plugin behavior and supply information about the community
and developers involved in a project.

Maven coordinates define a set of identifiers which can be used to uniquely identify a project, a
dependency, or a plugin in a Maven POM. Take a look at the following POM.

28

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>mavenbook</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Maven Quick Start Archetype</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

coordinates

Figure 3.4. A Maven Project's Coordinates

We've highlighted the Maven coordinates for this project: the groupId, artifactId, version
and packaging. These combined identifiers make up a project's coordinates.2Just like in any other
coordinate system, a set of Maven coordinates is an address for a specific point in "space". Maven
pinpoints a project via its coordinates when one project relates to another, either as a dependency, a
plugin, or a parent project reference. Maven coordinates are often written using a colon as a delimiter in
the following format: groupId:artifactId:packaging:version. In the above pom.xml file for
our current project, its coordinates are represented as mavenbook:my-app:jar:1.0-SNAPSHOT.

groupId

The group, company, team, organization, project, or other group. The convention for group
identifiers is that they begin with the reverse domain name of the organization that creates the
project. Projects from Sonatype would have a groupId that begins with com.sonatype, and
projects in the Apache Software Foundation would have a groupId that starts with org.apache.

2There is a fifth, seldom-used coordinate named classifier which we will introduce later in the book. You can feel free
to ignore classifiers for now.

29

artifactId

A unique identifier under groupId that represents a single project.

version

A specific release of a project. Projects that have been released have a fixed version identifier
that refers to a specific version of the project. Projects undergoing active development can use
a special identifier that marks a version as a SNAPSHOT.

The packaging format of a project is also an important component in the Maven coordinates, but it isn't
a part of a project's unique identifier. A project's groupId:artifactId:version make that project
unique; you can't have a project with the same three groupId, artifactId, and version identifiers.

packaging

The type of project, defaulting to jar, describing the packaged output produced by a project.
A project with packaging jar produces a JAR archive; a project with packaging war produces
a web application.

These four elements become the key to locating and using one particular project in the vast space of
other “Mavenized” projects . Maven repositories (public, private, and local) are organized according to
these identifiers. When this project is installed into the local Maven repository, it immediately becomes
locally available to any other project that wishes to use it. All you must do is add it as a dependency of
another project using the unique Maven coordinates for a specific artifact.

org.apache.derby (groupId)

(artifactId):(version):(packaging)
derby:10.1:jar
derby:10.2:jar
derbytools:10.1:jar
derbytools:10.2:jar

com.yourcompany

fancyapp:0.1:war
fancylib:2.1:jar

Maven's Repository Coordinate System

Every "artifact" has a
coordinate.

groupId, artifactId, version, packaging

Figure 3.5. Maven Space is a coordinate system of projects

3.5.4. Maven Repositories

When you run Maven for the first time, you will notice that Maven downloads a number of files from a
remote Maven repository. If the simple project was the first time you ran Maven, the first thing it will

30

do is download the latest release of the Resources plugin when it triggers the resources:resource
goal. In Maven, artifacts and plugins are retrieved from a remote repository when they are needed.
One of the reasons the initial Maven download is so small (1.5 MiB) is due to the fact that Maven
doesn't ship with much in the way of plugins. Maven ships with the bare minimum and fetches from
a remote repository when it needs to. Maven ships with a default remote repository location (http://
repo1.maven.org/maven2) which it uses to download the core Maven plugins and dependencies.

Often you will be writing a project which depends on libraries that are neither free nor publicly
distributed. In this case you will need to either setup a custom repository inside your organization's
network or download and install the dependencies manually. The default remote repositories can be
replaced or augmented with references to custom Maven repositories maintained by your organization.
There are multiple products available to allow organizations to manage and maintain mirrors of the
public Maven repositories.

What makes a Maven repository a Maven repository? A repository is a collection of project
artifacts stored in a directory structure that closely matches a project's Maven coordinates.
You can see this structure by opening up a web browser and browsing the central Maven
repository at http://repo1.maven.org/maven2/. You will see that an artifact with the coordinates
org.apache.commons:commons-email:1.1 is available under the directory /org/apache/
commons/commons-email/1.1/ in a file named commons-email-1.1.jar. The standard for a
Maven repository is to store an artifact in the following directory relative to the root of the repository:
/<groupId>/<artifactId>/<version>/<artifactId>-<version>.<packaging>

Maven downloads artifacts and plugins from a remote repository to your local machine and stores these
artifacts in your local Maven repository. Once Maven has downloaded an artifact from the remote
Maven repository it never needs to download that artifact again as Maven will always look for the
artifact in the local repository before looking elsewhere. On Windows XP, your local repository is
likely in C:\Documents and Settings\USERNAME\.m2\repository, and on Windows Vista,
your local repository is in C:\Users\USERNAME\.m2\repository. On Unix systems, your local
Maven repository is available in ~/.m2/repository. When you build a project like the simple project
you created in the previous section, the install phase executes a goal which installs your project's
artifacts in your local Maven repository.

In your local repository, you should be able to see the artifact created by our simple project. If you run
the mvn install command, Maven will install our project's artifact in your local repository. Try it.

$ mvn install
...
[INFO] [install:install]
[INFO] Installing .../simple-1.0-SNAPSHOT.jar to \
 ~/.m2/repository/com/sonatype/maven/simple/1.0-SNAPSHOT/ \
 simple-1.0-SNAPSHOT.jar
...

As you can see from the output of this command, Maven installed our project's JAR file into our local
Maven repository. Maven uses the local repository to share dependencies across local projects. If you

http://repo1.maven.org/maven2
http://repo1.maven.org/maven2
http://repo1.maven.org/maven2/

31

develop two projects—project A and project B—with project B depending on the artifact produced by
project A, Maven will retrieve project A's artifact from your local repository when it is building project
B. Maven repositories are both a local cache of artifacts downloaded from a remote repository and a
mechanism for allowing your projects to depend on each other.

3.5.5. Maven's Dependency Management

In this chapter's simple example, Maven resolved the coordinates of the JUnit
dependency—junit:junit:3.8.1—to a path in a Maven repository /junit/junit/3.8.1/
junit-3.8.1.jar. The ability to locate an artifact in a repository based on Maven coordinates gives
us the ability to define dependencies in a project's POM. If you examine the simple project's pom.xml
file, you will see that there is a section which deals with dependencies, and that this section contains
a single dependency—JUnit.

A more complex project would contain more than one dependency, or it might contain dependencies
that depend on other artifacts. Support for transitive dependencies is one of Maven’s most powerful
features. Let’s say your project depends on a library that, in turn, depends on 5 or 10 other libraries
(Spring or Hibernate, for example). Instead of having to track down all of these dependencies and list
them in your pom.xml explicitly, you can simply depend on the library you are interested in and Maven
will add the dependencies of this library to your project’s dependencies implicitly. Maven will also take
care of working out conflicts between dependencies, and provides you with the ability to customize the
default behavior and exclude certain transitive dependencies.

Let's take a look at a dependency which was downloaded to your local repository when you
ran the previous example. Look in your local repository path under ~/.m2/repository/junit/
junit/3.8.1/. If you have been following this chapter's examples, there will be a file named
junit-3.8.1.jar and a junit-3.8.1.pom file in addition to a few checksum files which Maven
uses to verify the authenticity of a downloaded artifact. Note that Maven doesn't just download the JUnit
JAR file, Maven also downloads a POM file for the JUnit dependency. The fact that Maven downloads
POM files in addition to artifacts is central to Maven's support for transitive dependencies.

When you install your project’s artifact in the local repository, you will also notice that Maven publishes
a slightly modified version of the project’s pom.xml file in the same directory as the JAR file. Storing
a POM file in the repository gives other projects information about this project, most importantly what
dependencies it has. If Project B depends on Project A, it also depends on Project A’s dependencies.
When Maven resolves a dependency artifact from a set of Maven coordinates, it also retrieves the POM
and consults the dependencies POM to find any transitive dependencies. These transitive dependencies
are then added as dependencies of the current project.

A dependency in Maven isn’t just a JAR file; it’s a POM file that, in turn, may declare dependencies
on other artifacts. These dependencies of dependencies are called transitive dependencies, and they are
made possible by the fact that the Maven repository stores more than just bytecode; it stores metadata
about artifacts.

32

com.sonatype.maven
project-a
1.0-SNAPSHOT

com.sonatype.maven
project-e
1.0-SNAPSHOT

com.sonatype.maven
project-b
1.0-SNAPSHOT

com.sonaype.maven
project-c
1.0-SNAPSHOT

com.sonatype.maven
project-d
1.0-SNAPSHOT

transitive dependencies

dependencies

Figure 3.6. Maven Resolves Transitive Dependencies

In the previous figure, project A depends on projects B and C. Project B depends on project D, and project
C depends on project E. The full set of direct and transitive dependencies for project A would be projects
B, C, D, and E, but all project A had to do was define a dependency on B and C. Transitive dependencies
can come in handy when your project relies on other projects with several small dependencies (like
Hibernate, Apache Struts, or the Spring Framework). Maven also provides you with the ability to exclude
transitive dependencies from being included in a project's classpath.

Maven also provides for different dependency scopes. The simple project’s pom.xml contains a single
dependency—junit:junit:jar:3.8.1—with a scope of test. When a dependency has a scope
of test, it will not be available to the compile goal of the Compiler plugin. It will be added to the
classpath for only the compiler:testCompile and surefire:test goals.

When you create a JAR for a project, dependencies are not bundled with the generated artifact; they are
used only for compilation. When you use Maven to create a WAR or an EAR file, you can configure
Maven to bundle dependencies with the generated artifact, and you can also configure it to exclude
certain dependencies from the WAR file using the provided scope. The provided scope tells Maven
that a dependency is needed for compilation, but should not be bundled with the output of a build.
This scope comes in handy when you are developing a web application. You’ll need to compile your
code against the Servlet specification, but you don’t want to include the Servlet API JAR in your web
application’s WEB-INF/lib directory.

33

3.5.6. Site Generation and Reporting

Another important feature of Maven is its ability to generate documentation and reports. In your simple
project’s directory, execute the following command:

$ mvn site

This will execute the site lifecycle phase. Unlike the default build lifecycle that manages generation
of code, manipulation of resources, compilation, packaging, etc., this lifecycle is concerned solely with
processing site content under the src/site directories and generating reports. After this command
executes, you should see a project web site in the target/site directory. Load target/site/
index.html and you should see a basic shell of a project site. This shell contains some reports under
“Project Reports” in the lefthand navigation menu, and it also contains information about the project,
the dependencies, and developers associated with it under “Project Information.” The simple project’s
web site is mostly empty, since the POM contains very little information about itself beyond its Maven
coordinates, a name, a URL, and a single test dependency.

On this site, you’ll notice that some default reports are available. A unit test report communicates the
success and failure of all unit tests in the project. Another report generates Javadoc for the project’s
API. Maven provides a full range of configurable reports, such as the Clover report that examines unit
test coverage, the JXR report that generates cross-referenced HTML source code listings useful for
code reviews, the PMD report that analyzes source code for various coding problems, and the JDepend
report that analyzes the dependencies between packages in a codebase. You can customize site reports
by configuring which reports are included in a build via the pom.xml file.

3.6. Summary
In this chapter, we have created a simple project, packaged the project into a JAR file, installed that
JAR into the Maven repository for use by other projects, and generated a site with documentation. We
accomplished this without writing a single line of code or touching a single configuration file. We also
took some time to develop definitions for some of the core concepts of Maven. In the next chapter, we’ll
start customizing and modifying our project pom.xml file to add dependencies and configure unit tests.

Chapter 4. Customizing a Maven
Project
4.1. Introduction

This chapter expands on the information introduced in Chapter 3, A Simple Maven Project. We’re going
to create a simple project generated with the Maven Archetype plugin, add some dependencies, add
some source code, and customize the project to suit our needs. By the end of this chapter, you will know
how to start using Maven to create real projects.

4.1.1. Downloading this Chapter's Example

We’ll be developing a useful program that interacts with a Yahoo! Weather web service. Although
you should be able to follow along with this chapter without the example source code, we recommend
that you download a copy of the code to use as a reference. This chapter’s example project may be
downloaded with the book’s example code at:

http://www.sonatype.com/books/mvnex-book/mvnexbook-examples-0.3.1-project.zip

Unzip this archive in any directory, and then go to the ch-custom/ directory. There you will see a
directory named simple-weather/, which contains the Maven project developed in this chapter.

4.2. Defining the Simple Weather Project

Before we start customizing this project, let’s take a step back and talk about the simple weather project.
What is it? It’s a contrived example, created to demonstrate some of the features of Maven. It is an
application that is representative of the kind you might need to build. The simple weather application is
a basic command-line-driven application that takes a zip code and retrieves some data from the Yahoo!
Weather RSS feed. It then parses the result and prints the result to standard output.

We chose this example for a number of reasons. First, it is straightforward. A user supplies input via the
command line, the app takes that zip code, makes a request to Yahoo! Weather, parses the result, and
formats some simple data to the screen. This example is a simple main() function and some supporting
classes; there is no enterprise framework to introduce and explain, just XML parsing and some logging
statements. Second, it gives us a good excuse to introduce some interesting libraries such as Velocity,
Dom4J, and Log4J. Although this book is focused on Maven, we won’t shy away from an opportunity to
introduce interesting utilities. Lastly, it is an example that can be introduced, developed, and deployed
in a single chapter.

36

4.2.1. Yahoo! Weather RSS

Before you build this application, you should know something about the Yahoo! Weather RSS feed. To
start with, the service is made available under the following terms:

The feeds are provided free of charge for use by individuals and nonprofit
organizations for personal, noncommercial uses. We ask that you provide attribution
to Yahoo! Weather in connection with your use of the feeds.

In other words, if you are thinking of integrating these feeds into your commercial web site, think
again—this feed is for personal, noncommercial use. The use we’re encouraging in this chapter is
personal educational use. For more information about these terms of service, see the Yahoo Weather!
API documentation here: http://developer.yahoo.com/weather/.

4.3. Creating the Simple Weather Project
First, let’s use the Maven Archetype plugin to create a basic skeleton for the simple weather project.
Execute the following command to create a new project, select archetype 15, and then enter "Y" to
confirm and generate the new project:

$ mvn archetype:generate -DgroupId=org.sonatype.mavenbook.custom \
 -DartifactId=simple-weather \
 -DpackageName=org.sonatype.mavenbook \
 -Dversion=1.0

[INFO] Preparing archetype:generate
...
[INFO] [archetype:generate {execution: default-cli}]
[INFO] Generating project in Interactive mode
[INFO] No archetype defined. Using maven-archetype-quickstart \
 (org.apache.maven.archetypes:maven-archetype-quickstart:1.0)
Choose archetype:
...
15: internal -> maven-archetype-quickstart ()
...
Choose a number: (...) 15: : 15
Confirm properties configuration:
groupId: org.sonatype.mavenbook.custom
artifactId: simple-weather
version: 1.0
package: org.sonatype.mavenbook.custom
 Y: : Y
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.custom
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook.custom
[INFO] Parameter: package, Value: org.sonatype.mavenbook.custom
[INFO] Parameter: artifactId, Value: simple-weather
[INFO] Parameter: basedir, Value: /private/tmp
[INFO] Parameter: version, Value: 1.0
[INFO] BUILD SUCCESSFUL

http://developer.yahoo.com/weather/

37

Once the Maven Archetype plugin creates the project, go into the simple-weather directory and take
a look at the pom.xml file. You should see the XML document that’s shown in Example 4.1, “Initial
POM for the simple-weather project”.

Example 4.1. Initial POM for the simple-weather project

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.custom</groupId>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>simple-weather2</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Next, you will need to configure the Maven Compiler plugin to target Java 5. To do this, add the build
element to the initial POM as shown in Example 4.2, “POM for the simple-weather project with compiler
configuration”.

Example 4.2. POM for the simple-weather project with compiler configuration

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.custom</groupId>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>simple-weather2</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>

38

 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Notice that we passed in the version parameter to the archetype:generate goal. This overrides
the default value of 1.0-SNAPSHOT. In this project, we're developing the 1.0 version of the simple-
weather project as you can see in the pom.xml version element.

4.4. Customize Project Information
Before we start writing code, let’s customize the project information a bit. We want to add some
information about the project’s license, the organization, and a few of the developers associated with the
project. This is all standard information you would expect to see in most projects. Example 4.3, “Adding
Organizational, Legal, and Developer Information to the pom.xml” shows the XML that supplies the
organizational information, the licensing information, and the developer information.

Example 4.3. Adding Organizational, Legal, and Developer Information to the pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
...

 <name>simple-weather</name>
 <url>http://www.sonatype.com</url>

 <licenses>
 <license>
 <name>Apache 2</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
 <distribution>repo</distribution>
 <comments>A business-friendly OSS license</comments>
 </license>
 </licenses>

 <organization>
 <name>Sonatype</name>
 <url>http://www.sonatype.com</url>

39

 </organization>

 <developers>
 <developer>
 <id>jason</id>
 <name>Jason Van Zyl</name>
 <email>jason@maven.org</email>
 <url>http://www.sonatype.com</url>
 <organization>Sonatype</organization>
 <organizationUrl>http://www.sonatype.com</organizationUrl>
 <roles>
 <role>developer</role>
 </roles>
 <timezone>-6</timezone>
 </developer>
 </developers>
...
</project>

The ellipses in Example 4.3, “Adding Organizational, Legal, and Developer Information to the
pom.xml” are shorthand for an abbreviated listing. When you see a pom.xml with "..." and "..." directly
after the project element's start tag and directly before the project element's end tag, this implies
that we are not showing the entire pom.xml file. In this case the licenses, organization, and
developers element were all added before the dependencies element.

4.5. Add New Dependencies
The simple weather application is going to have to complete the following three tasks: retrieve XML data
from Yahoo! Weather, parse the XML from Yahoo, and then print formatted output to standard output.
To accomplish these tasks, we have to introduce some new dependencies to our project's pom.xml.
To parse the XML response from Yahoo!, we're going to be using Dom4J and Jaxen, to format the
output of this command-line program we are going to be using Velocity, and we will also need to add
a dependency for Log4J which we will be using for logging. After we add these dependencies, our
dependencies element will look like the following example.

Example 4.4. Adding Dom4J, Jaxen, Velocity, and Log4J as Dependencies

<project>
 [...]
 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 <dependency>
 <groupId>dom4j</groupId>
 <artifactId>dom4j</artifactId>
 <version>1.6.1</version>

40

 </dependency>
 <dependency>
 <groupId>jaxen</groupId>
 <artifactId>jaxen</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 [...]
</project>

As you can see above, we've added four more dependency elements in addition to the existing element
which was referencing the test scoped dependency on JUnit. If you add these dependencies to the
project's pom.xml file and then run mvn install, you will see Maven downloading all of these
dependencies and other transitive dependencies to your local Maven repository.

How did we find these dependencies? Did we just "know" the appropriate groupId and artifactId
values? Some of the dependencies are so widely used (like Log4J) that you'll just remember what the
groupId and artifactId are every time you need to use them. Velocity, Dom4J, and Jaxen were
all located using the searching capability on http://repository.sonatype.org . This is a public Sonatype
Nexus instance which provides a search interface to various public Maven repositories, you can use it
to search for dependencies. To test this for yourself, load http://repository.sonatype.org and search for
some commonly used libraries such as Hibernate or the Spring Framework. When you search for an
artifact on this site, it will show you an artifactId and all of the versions known to the central Maven
repository. Clicking on the details for a specific version will load a page that contains the dependency
element you'll need to copy and paste into your own project's pom.xml. If you need to find a dependency,
you'll want to check out repository.sonatype.org1, as you'll often find that certain libraries have more
than one groupId. With this tool, you can make sense of the Maven repository.

4.6. Simple Weather Source Code
The Simple Weather command-line application consists of five Java classes.

org.sonatype.mavenbook.weather.Main

The Main class contains a static main() function: the entry point for this system.

1 http://repository.sonatype.org

http://repository.sonatype.org
http://repository.sonatype.org
http://repository.sonatype.org
http://repository.sonatype.org

41

org.sonatype.mavenbook.weather.Weather

The Weather class is a straightforward Java bean that holds the location of our weather report
and some key facts, such as the temperature and humidity.

org.sonatype.mavenbook.weather.YahooRetriever

The YahooRetriever class connects to Yahoo! Weather and returns an InputStream of the
data from the feed.

org.sonatype.mavenbook.weather.YahooParser

The YahooParser class parses the XML from Yahoo! Weather, and returns a Weather object.

org.sonatype.mavenbook.weather.WeatherFormatter

The WeatherFormatter class takes a Weather object, creates a VelocityContext, and
evaluates a Velocity template.

Although we won’t dwell on the code here, we will provide all the necessary code for you to get the
example working. We assume that most readers have downloaded the examples that accompany this
book, but we’re also mindful of those who may wish to follow the example in this chapter step-by-step.
The sections that follow list classes in the simple-weather project. Each of these classes should be
placed in the same package: org.sonatype.mavenbook.weather.

Let's remove the App and the AppTest classes created by archetype:generate and add our new
package. In a Maven project, all of a project's source code is stored in src/main/java. From the base
directory of the new project, execute the following commands:

$ cd src/test/java/org/sonatype/mavenbook
$ rm AppTest.java
$ cd ../../../../../..
$ cd src/main/java/org/sonatype/mavenbook
$ rm App.java
$ mkdir weather
$ cd weather

This creates a new package named org.sonatype.mavenbook.weather. Now we need to put some classes
in this directory. Using your favorite text editor, create a new file named Weather.java with the
contents shown in Example 4.5, “Simple Weather's Weather Model Object”.

Example 4.5. Simple Weather's Weather Model Object

package org.sonatype.mavenbook.weather;

public class Weather {
 private String city;
 private String region;
 private String country;
 private String condition;
 private String temp;

42

 private String chill;
 private String humidity;

 public Weather() {}

 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }

 public String getRegion() { return region; }
 public void setRegion(String region) { this.region = region; }

 public String getCountry() { return country; }
 public void setCountry(String country) { this.country = country; }

 public String getCondition() { return condition; }
 public void setCondition(String condition) { this.condition = condition; }

 public String getTemp() { return temp; }
 public void setTemp(String temp) { this.temp = temp; }

 public String getChill() { return chill; }
 public void setChill(String chill) { this.chill = chill; }

 public String getHumidity() { return humidity; }
 public void setHumidity(String humidity) { this.humidity = humidity; }
}

The Weather class defines a simple bean that is used to hold the weather information parsed from
the Yahoo! Weather feed. This feed provides a wealth of information, from the sunrise and sunset
times to the speed and direction of the wind. To keep this example as simple as possible, the Weather
model object keeps track of only the temperature, chill, humidity, and a textual description of current
conditions.

Now, in the same directory, create a file named Main.java. This Main class will hold the static main()
function—the entry point for this example.

Example 4.6. Simple Weather's Main Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

import org.apache.log4j.PropertyConfigurator;

public class Main {

 public static void main(String[] args) throws Exception {
 // Configure Log4J
 PropertyConfigurator.configure(Main.class.getClassLoader()
 .getResource("log4j.properties"));

43

 // Read the Zip Code from the Command-line (if none supplied, use 60202)
 String zipcode = "60202";
 try {
 zipcode = args[0];
 } catch(Exception e) {}

 // Start the program
 new Main(zipcode).start();
 }

 private String zip;

 public Main(String zip) {
 this.zip = zip;
 }

 public void start() throws Exception {
 // Retrieve Data
 InputStream dataIn = new YahooRetriever().retrieve(zip);

 // Parse Data
 Weather weather = new YahooParser().parse(dataIn);

 // Format (Print) Data
 System.out.print(new WeatherFormatter().format(weather));
 }
}

The main() function shown above configures Log4J by retrieving a resource from the classpath, it then
tries to read a zip code from the command-line. If an exception is thrown while it is trying to read the zip
code, the program will default to a zip code of 60202. Once it has a zip code, it instantiates an instance
of Main and calls the start() method on an instance of Main. The start() method calls out to
the YahooRetriever to retrieve the weather XML. The YahooRetriever returns an InputStream
which is then passed to the YahooParser. The YahooParser parses the Yahoo! Weather XML and
returns a Weather object. Finally, the WeatherFormatter takes a Weather object and spits out a
formatted String which is printed to standard output.

Create a file named YahooRetriever.java in the same directory with the contents shown in
Example 4.7, “Simple Weather's YahooRetriever Class”.

Example 4.7. Simple Weather's YahooRetriever Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;

import org.apache.log4j.Logger;

public class YahooRetriever {

44

 private static Logger log = Logger.getLogger(YahooRetriever.class);

 public InputStream retrieve(int zipcode) throws Exception {
 log.info("Retrieving Weather Data");
 String url = "http://weather.yahooapis.com/forecastrss?p=" + zipcode;
 URLConnection conn = new URL(url).openConnection();
 return conn.getInputStream();
 }
}

This simple class opens a URLConnection to the Yahoo! Weather API and returns an InputStream.
To create something to parse this feed, we’ll need to create the YahooParser.java file in the same
directory.

Example 4.8. Simple Weather's YahooParser Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;
import java.util.HashMap;
import java.util.Map;

import org.apache.log4j.Logger;
import org.dom4j.Document;
import org.dom4j.DocumentFactory;
import org.dom4j.io.SAXReader;

public class YahooParser {

 private static Logger log = Logger.getLogger(YahooParser.class);

 public Weather parse(InputStream inputStream) throws Exception {
 Weather weather = new Weather();

 log.info("Creating XML Reader");
 SAXReader xmlReader = createXmlReader();
 Document doc = xmlReader.read(inputStream);

 log.info("Parsing XML Response");
 weather.setCity(doc.valueOf("/rss/channel/y:location/@city"));
 weather.setRegion(doc.valueOf("/rss/channel/y:location/@region"));
 weather.setCountry(doc.valueOf("/rss/channel/y:location/@country"));
 weather.setCondition(doc.valueOf("/rss/channel/item/y:condition/@text"));
 weather.setTemp(doc.valueOf("/rss/channel/item/y:condition/@temp"));
 weather.setChill(doc.valueOf("/rss/channel/y:wind/@chill"));
 weather.setHumidity(doc.valueOf("/rss/channel/y:atmosphere/@humidity"));

 return weather;
 }

 private SAXReader createXmlReader() {
 Map<String,String> uris = new HashMap<String,String>();

45

 uris.put("y", "http://xml.weather.yahoo.com/ns/rss/1.0");

 DocumentFactory factory = new DocumentFactory();
 factory.setXPathNamespaceURIs(uris);

 SAXReader xmlReader = new SAXReader();
 xmlReader.setDocumentFactory(factory);
 return xmlReader;
 }
}

The YahooParser is the most complex class in this example. We’re not going to dive into the details of
Dom4J or Jaxen here, but the class deserves some explanation. YahooParser’s parse() method takes
an InputStream and returns a Weather object. To do this, it needs to parse an XML document with
Dom4J. Since we’re interested in elements under the Yahoo! Weather XML namespace, we need to
create a namespace-aware SAXReader in the createXmlReader() method. Once we create this reader
and parse the document, we get an org.dom4j.Document object back. Instead of iterating through
child elements, we simply address each piece of information we need using an XPath expression. Dom4J
provides the XML parsing in this example, and Jaxen provides the XPath capabilities.

Once we’ve created a Weather object, we need to format our output for human consumption. Create a
file named WeatherFormatter.java in the same directory as the other classes.

Example 4.9. Simple Weather's WeatherFormatter Class

package org.sonatype.mavenbook.weather;

import java.io.InputStreamReader;
import java.io.Reader;
import java.io.StringWriter;

import org.apache.log4j.Logger;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

public class WeatherFormatter {

 private static Logger log = Logger.getLogger(WeatherFormatter.class);

 public String format(Weather weather) throws Exception {
 log.info("Formatting Weather Data");
 Reader reader =
 new InputStreamReader(getClass().getClassLoader()
 .getResourceAsStream("output.vm"));
 VelocityContext context = new VelocityContext();
 context.put("weather", weather);
 StringWriter writer = new StringWriter();
 Velocity.evaluate(context, writer, "", reader);
 return writer.toString();
 }
}

46

The WeatherFormatter uses Velocity to render a template. The format() method takes a Weather
bean and spits out a formatted String. The first thing the format() method does is load a Velocity
template from the classpath named output.vm. We then create a VelocityContext which is
populated with a single Weather object named weather. A StringWriter is created to hold the
results of the template merge. The template is evaluated with a call to Velocity.evaluate() and the
results are returned as a String.

Before we can run this example, we'll need to add some resources to our classpath.

4.7. Add Resources
This project depends on two classpath resources: the Main class that configures Log4J with a classpath
resource named log4j.properties, and the WeatherFormatter that references a Velocity template
from the classpath named output.vm. Both of these resources need to be in the default package (or
the root of the classpath).

To add these resources, we’ll need to create a new directory from the base directory of the project: src/
main/resources. Since this directory was not created by the archetype:generate task, we need
to create it by executing the following commands from the project’s base directory:

$ cd src/main
$ mkdir resources
$ cd resources

Once the resources directory is created, we can add the two resources. First, add the
log4j.properties file in the resources directory, as shown in Example 4.10, “Simple Weather's
Log4J Configuration File”.

Example 4.10. Simple Weather's Log4J Configuration File

Set root category priority to INFO and its only appender to CONSOLE.
log4j.rootCategory=INFO, CONSOLE

CONSOLE is set to be a ConsoleAppender using a PatternLayout.
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.Threshold=INFO
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%-4r %-5p %c{1} %x - %m%n

This log4j.properties file simply configures Log4J to print all log messages to standard output
using a PatternLayout. Lastly, we need to create the output.vm, which is the Velocity template used
to render the output of this command-line program. Create output.vm in the resources/ directory.

Example 4.11. Simple Weather's Output Velocity Template

47

 Current Weather Conditions for:
 ${weather.city}, ${weather.region}, ${weather.country}

 Temperature: ${weather.temp}
 Condition: ${weather.condition}
 Humidity: ${weather.humidity}
 Wind Chill: ${weather.chill}

This template contains a number of references to a variable named weather, which is the Weather bean
that was passed to the WeatherFormatter. The ${weather.temp} syntax is shorthand for retrieving
and displaying the value of the temp bean property. Now that we have all of our project’s code in the
right place, we can use Maven to run the example.

4.8. Running the Simple Weather Program
Using the Exec plugin from the Codehaus Mojo project2, we can execute this program. To execute the
Main class, run the following command from the project’s base directory:

$ mvn install
/$ mvn exec:java -Dexec.mainClass=org.sonatype.mavenbook.weather.Main
...
[INFO] [exec:java]
0 INFO YahooRetriever - Retrieving Weather Data
134 INFO YahooParser - Creating XML Reader
333 INFO YahooParser - Parsing XML Response
420 INFO WeatherFormatter - Formatting Weather Data

 Current Weather Conditions for:
 Evanston, IL, US

 Temperature: 45
 Condition: Cloudy
 Humidity: 76
 Wind Chill: 38

...

We didn’t supply a command-line argument to the Main class, so we ended up with the default zip code,
60202. To supply a zip code, we would use the -Dexec.args argument and pass in a zip code:

$ mvn exec:java -Dexec.mainClass=org.sonatype.mavenbook.weather.Main \
 -Dexec.args="70112"
...
[INFO] [exec:java]
0 INFO YahooRetriever - Retrieving Weather Data
134 INFO YahooParser - Creating XML Reader
333 INFO YahooParser - Parsing XML Response

2 http://mojo.codehaus.org

http://mojo.codehaus.org
http://mojo.codehaus.org

48

420 INFO WeatherFormatter - Formatting Weather Data

 Current Weather Conditions for:
 New Orleans, LA, US

 Temperature: 82
 Condition: Fair
 Humidity: 71
 Wind Chill: 82

[INFO] Finished at: Sun Aug 31 09:33:34 CDT 2008
...

As you can see, we’ve successfully executed the simple weather command-line tool, retrieved some data
from Yahoo! Weather, parsed the result, and formatted the resulting data with Velocity. We achieved
all of this without doing much more than writing our project’s source code and adding some minimal
configuration to the pom.xml. Notice that no “build process” was involved. We didn’t need to define
how or where the Java compiler compiles our source to bytecode, and we didn’t need to instruct the
build system how to locate the bytecode when we executed the example application. All we needed to
do to include a few dependencies was locate the appropriate Maven coordinates.

4.8.1. The Maven Exec Plugin

The Exec plugin allows you to execute Java classes and other scripts. It is not a core Maven plugin, but it
is available from the Mojo3 project hosted by Codehaus4. For a full description of the Exec plugin, run:

$ mvn help:describe -Dplugin=exec -Dfull

This will list all of the goals that are available in the Maven Exec plugin. The Help plugin will also list
all of the valid parameters for the Exec plugin. If you would like to customize the behavior of the Exec
plugin you should use the documentation provided by help:describe as a guide. Although the Exec
plugin is useful, you shouldn’t rely on it as a way to execute your application outside of running tests
during development. For a more robust solution, use the Maven Assembly plugin that is demonstrated
in the section Section 4.13, “Building a Packaged Command Line Application”, later in this chapter.

4.8.2. Exploring Your Project Dependencies

The Exec plugin makes it possible for us to run the simplest weather program without having to load the
appropriate dependencies into the classpath. In any other build system, we would have to copy all of the
program dependencies into some sort of lib/ directory containing a collection of JAR files. Then, we
would have to write a simple script that includes our program’s bytecode and all of our dependencies in
a classpath. Only then could we run java org.sonatype.mavenbook.weather.Main. The Exec
plugin leverages the fact that Maven already knows how to create and manage your classpath and
dependencies.

3 http://mojo.codehaus.org
4 http://www.codehaus.org

http://mojo.codehaus.org
http://www.codehaus.org
http://mojo.codehaus.org
http://www.codehaus.org

49

This is convenient, but it’s also nice to know exactly what is being included in your project’s classpath.
Although the project depends on a few libraries such as Dom4J, Log4J, Jaxen, and Velocity, it also
relies on a few transitive dependencies. If you need to find out what is on the classpath, you can use
the Maven Dependency plugin to print out a list of resolved dependencies. To print out this list for the
simple weather project, execute the dependency:resolve goal:

$ mvn dependency:resolve
...
[INFO] [dependency:resolve]
[INFO]
[INFO] The following files have been resolved:
[INFO] com.ibm.icu:icu4j:jar:2.6.1 (scope = compile)
[INFO] commons-collections:commons-collections:jar:3.1 (scope = compile)
[INFO] commons-lang:commons-lang:jar:2.1 (scope = compile)
[INFO] dom4j:dom4j:jar:1.6.1 (scope = compile)
[INFO] jaxen:jaxen:jar:1.1.1 (scope = compile)
[INFO] jdom:jdom:jar:1.0 (scope = compile)
[INFO] junit:junit:jar:3.8.1 (scope = test)
[INFO] log4j:log4j:jar:1.2.14 (scope = compile)
[INFO] oro:oro:jar:2.0.8 (scope = compile)
[INFO] velocity:velocity:jar:1.5 (scope = compile)
[INFO] xalan:xalan:jar:2.6.0 (scope = compile)
[INFO] xerces:xercesImpl:jar:2.6.2 (scope = compile)
[INFO] xerces:xmlParserAPIs:jar:2.6.2 (scope = compile)
[INFO] xml-apis:xml-apis:jar:1.0.b2 (scope = compile)
[INFO] xom:xom:jar:1.0 (scope = compile)

As you can see, our project has a very large set of dependencies. While we only included direct
dependencies on four libraries, we appear to be depending on 15 dependencies in total. Dom4J depends
on Xerces and the XML Parser APIs, Jaxen depends on Xalan being available in the classpath. The
Dependency plugin is going to print out the final combination of dependencies under which your project
is being compiled. If you would like to know about the entire dependency tree of your project, you can
run the dependency:tree goal.

$ mvn dependency:tree
...
[INFO] [dependency:tree]
[INFO] org.sonatype.mavenbook.custom:simple-weather:jar:1.0
[INFO] +- log4j:log4j:jar:1.2.14:compile
[INFO] +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | \- xml-apis:xml-apis:jar:1.0.b2:compile
[INFO] +- jaxen:jaxen:jar:1.1.1:compile
[INFO] | +- jdom:jdom:jar:1.0:compile
[INFO] | +- xerces:xercesImpl:jar:2.6.2:compile
[INFO] | \- xom:xom:jar:1.0:compile
[INFO] | +- xerces:xmlParserAPIs:jar:2.6.2:compile
[INFO] | +- xalan:xalan:jar:2.6.0:compile
[INFO] | \- com.ibm.icu:icu4j:jar:2.6.1:compile
[INFO] +- velocity:velocity:jar:1.5:compile
[INFO] | +- commons-collections:commons-collections:jar:3.1:compile
[INFO] | +- commons-lang:commons-lang:jar:2.1:compile
[INFO] | \- oro:oro:jar:2.0.8:compile

50

[INFO] +- org.apache.commons:commons-io:jar:1.3.2:test
[INFO] \- junit:junit:jar:3.8.1:test
...

If you're truly adventurous or want to see the full dependency trail, including artifacts that were rejected
due to conflicts and other reasons, run Maven with the debug flag.

$ mvn install -X
...
[DEBUG] org.sonatype.mavenbook.custom:simple-weather:jar:1.0 (selected for null)
[DEBUG] log4j:log4j:jar:1.2.14:compile (selected for compile)
[DEBUG] dom4j:dom4j:jar:1.6.1:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:jar:1.0.b2:compile (selected for compile)
[DEBUG] jaxen:jaxen:jar:1.1.1:compile (selected for compile)
[DEBUG] jaxen:jaxen:jar:1.1-beta-6:compile (removed -)
[DEBUG] jaxen:jaxen:jar:1.0-FCS:compile (removed -)
[DEBUG] jdom:jdom:jar:1.0:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:jar:1.3.02:compile (removed - nearer: 1.0.b2)
[DEBUG] xerces:xercesImpl:jar:2.6.2:compile (selected for compile)
[DEBUG] xom:xom:jar:1.0:compile (selected for compile)
[DEBUG] xerces:xmlParserAPIs:jar:2.6.2:compile (selected for compile)
[DEBUG] xalan:xalan:jar:2.6.0:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:1.0.b2.
[DEBUG] com.ibm.icu:icu4j:jar:2.6.1:compile (selected for compile)
[DEBUG] velocity:velocity:jar:1.5:compile (selected for compile)
[DEBUG] commons-collections:commons-collections:jar:3.1:compile
[DEBUG] commons-lang:commons-lang:jar:2.1:compile (selected for compile)
[DEBUG] oro:oro:jar:2.0.8:compile (selected for compile)
[DEBUG] junit:junit:jar:3.8.1:test (selected for test)

In the debug output, we see some of the guts of the dependency management system at work. What you
see here is the tree of dependencies for this project. Maven is printing out the full Maven coordinates for
all of your project’s dependencies and the dependencies of your dependencies (and the dependencies
of your dependencies’ dependencies). You can see that simple-weather depends on jaxen, which
depends on xom, which in turn depends on icu4j. You can also see that Maven is creating a graph
of dependencies, eliminating duplicates, and resolving any conflicts between different versions. If you
are having problems with dependencies, it is often helpful to dig a little deeper than the list generated
by dependency:resolve. Turning on the debug output allows you to see Maven’s dependency
mechanism at work.

4.9. Writing Unit Tests
Maven has built-in support for unit tests, and testing is a part of the default Maven lifecycle. Let’s add
some unit tests to our simple weather project. First, let’s create the org.sonatype.mavenbook.weather
package under src/test/java:

$ cd src/test/java
$ cd org/sonatype/mavenbook
$ mkdir -p weather/yahoo

51

$ cd weather/yahoo

At this point, we will create two unit tests. The first will test the YahooParser, and the second will
test the WeatherFormatter. In the weather package, create a file named YahooParserTest.java
with the contents shown in the next example.

Example 4.12. Simple Weather's YahooParserTest Unit Test

package org.sonatype.mavenbook.weather.yahoo;

import java.io.InputStream;

import junit.framework.TestCase;

import org.sonatype.mavenbook.weather.Weather;
import org.sonatype.mavenbook.weather.YahooParser;

public class YahooParserTest extends TestCase {

 public YahooParserTest(String name) {
 super(name);
 }

 public void testParser() throws Exception {
 InputStream nyData =
 getClass().getClassLoader().getResourceAsStream("ny-weather.xml");
 Weather weather = new YahooParser().parse(nyData);
 assertEquals("New York", weather.getCity());
 assertEquals("NY", weather.getRegion());
 assertEquals("US", weather.getCountry());
 assertEquals("39", weather.getTemp());
 assertEquals("Fair", weather.getCondition());
 assertEquals("39", weather.getChill());
 assertEquals("67", weather.getHumidity());
 }
}

This YahooParserTest extends the TestCase class defined by JUnit. It follows the usual pattern for a
JUnit test: a constructor that takes a single String argument that calls the constructor of the superclass,
and a series of public methods that begin with “test” that are invoked as unit tests. We define a single
test method, testParser, which tests the YahooParser by parsing an XML document with known
values. The test XML document is named ny-weather.xml and is loaded from the classpath. We’ll add
test resources in Section 4.11, “Adding Unit Test Resources”. In our Maven project’s directory layout,
the ny-weather.xml file is found in the directory that contains test resources—${basedir}/src/

test/resources under org/sonatype/mavenbook/weather/yahoo/ny-weather.xml. The
file is read as an InputStream and passed to the parse() method on YahooParser. The parse()
method returns a Weather object, which is then tested with a series of calls to assertEquals(), a
method defined by TestCase.

In the same directory, create a file named WeatherFormatterTest.java.

52

Example 4.13. Simple Weather's WeatherFormatterTest Unit Test

package org.sonatype.mavenbook.weather.yahoo;

import java.io.InputStream;

import org.apache.commons.io.IOUtils;

import org.sonatype.mavenbook.weather.Weather;
import org.sonatype.mavenbook.weather.WeatherFormatter;
import org.sonatype.mavenbook.weather.YahooParser;

import junit.framework.TestCase;

public class WeatherFormatterTest extends TestCase {

 public WeatherFormatterTest(String name) {
 super(name);
 }

 public void testFormat() throws Exception {
 InputStream nyData =
 getClass().getClassLoader().getResourceAsStream("ny-weather.xml");
 Weather weather = new YahooParser().parse(nyData);
 String formattedResult = new WeatherFormatter().format(weather);
 InputStream expected =
 getClass().getClassLoader().getResourceAsStream("format-expected.dat");
 assertEquals(IOUtils.toString(expected).trim(),
 formattedResult.trim());
 }
}

The second unit test in this simple project tests the WeatherFormatter. Like the YahooParserTest,
the WeatherFormatterTest also extends JUnit's TestCase class. The single test function reads
the same test resource from ${basedir}/src/test/resources under the org/sonatype/
mavenbook/weather/yahoo directory via this unit test's classpath. We'll add test resources in
Section 4.11, “Adding Unit Test Resources”. WeatherFormatterTest runs this sample input file
through the YahooParser which spits out a Weather object, and this object is then formatted with
the WeatherFormatter. Since the WeatherFormatter prints out a String, we need to test it
against some expected input. Our expected input has been captured in a text file named format-
expected.dat which is in the same directory as ny-weather.xml. To compare the test's output
to the expected output, we read this expected output in as an InputStream and use Commons IO's
IOUtils class to convert this file to a String. This String is then compared to the test output using
assertEquals().

4.10. Adding Test-scoped Dependencies
In WeatherFormatterTest, we used a utility from Apache Commons IO—the IOUtils class.
IOUtils provides a number of helpful static functions that take most of the work out of input/

53

output operations. In this particular unit test, we used IOUtils.toString() to copy the format-
expected.dat classpath resource to a String. We could have done this without using Commons
IO, but it would have required an extra six or seven lines of code to deal with the various
InputStreamReader and StringWriter objects. The main reason we used Commons IO was to give
us an excuse to add a test-scoped dependency on Commons IO.

A test-scoped dependency is a dependency that is available on the classpath only during test
compilation and test execution. If your project has war or ear packaging, a test-scoped dependency
would not be included in the project’s output archive. To add a test-scoped dependency, add the
dependency element to your project’s dependencies section, as shown in the following example:

Example 4.14. Adding a Test-scoped Dependency

<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 <scope>test</scope>
 </dependency>
 ...
 </dependencies>
</project>

After you add this dependency to the pom.xml, run mvn dependency:resolve and you should see
that commons-io is now listed as a dependency with scope test. We need to do one more thing before
we are ready to run this project's unit tests. We need to create the classpath resources these unit tests
depend on.

4.11. Adding Unit Test Resources
A unit test has access to a set of resources which are specific to tests. Often you'll store files containing
expected results and files containing dummy input in the test classpath. In this project, we're storing a
test XML document for YahooParserTest named ny-weather.xml and a file containing expected
output from the WeatherFormatter in format-expected.dat.

To add test resources, you'll need to create the src/test/resources directory. This is the default
directory in which Maven looks for unit test resources. To create this directory execute the following
commands from your project's base directory.

$ cd src/test
$ mkdir resources
$ cd resources

54

Once you've create the resources directory, create a file named format-expected.dat in the
resources directory.

Example 4.15. Simple Weather's WeatherFormatterTest Expected Output

 Current Weather Conditions for:
 New York, NY, US

 Temperature: 39
 Condition: Fair
 Humidity: 67
 Wind Chill: 39

This file should look familiar. It is the same output that was generated previously when you ran the
simple weather project with the Maven Exec plugin. The second file you’ll need to add to the resources
directory is ny-weather.xml.

Example 4.16. Simple Weather's YahooParserTest XML Input

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"
 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
 <channel>
 <title>Yahoo! Weather - New York, NY</title>
 <link>http://us.rd.yahoo.com/dailynews/rss/weather/New_York__NY/</link>
 <description>Yahoo! Weather for New York, NY</description>
 <language>en-us</language>
 <lastBuildDate>Sat, 10 Nov 2007 8:51 pm EDT</lastBuildDate>

 <ttl>60</ttl>
 <yweather:location city="New York" region="NY" country="US" />
 <yweather:units temperature="F" distance="mi" pressure="in" speed="mph" />
 <yweather:wind chill="39" direction="0" speed="0" />
 <yweather:atmosphere humidity="67" visibility="1609" pressure="30.18"
 rising="1" />
 <yweather:astronomy sunrise="6:36 am" sunset="4:43 pm" />
 
 <item>
 <title>Conditions for New York, NY at 8:51 pm EDT</title>

 <geo:lat>40.67</geo:lat>
 <geo:long>-73.94</geo:long>
 <link>http://us.rd.yahoo.com/dailynews/rss/weather/New_York__NY/\</link>

55

 <pubDate>Sat, 10 Nov 2007 8:51 pm EDT</pubDate>
 <yweather:condition text="Fair" code="33" temp="39"
 date="Sat, 10 Nov 2007 8:51 pm EDT" />
 <description><![CDATA[

 Current Conditions:

 Fair, 39 F

 Forecast:

 Sat - Partly Cloudy. High: 45 Low: 32

 Sun - Sunny. High: 50 Low: 38

]]></description>
 <yweather:forecast day="Sat" date="10 Nov 2007" low="32" high="45"
 text="Partly Cloudy" code="29" />

<yweather:forecast day="Sun" date="11 Nov 2007" low="38" high="50"
 text="Sunny" code="32" />
 <guid isPermaLink="false">10002_2007_11_10_20_51_EDT</guid>
 </item>
</channel>
</rss>

This file contains a test XML document for the YahooParserTest. We store this file so that we can
test the YahooParser without having to retrieve and XML response from Yahoo! Weather.

4.12. Executing Unit Tests
Now that your project has unit tests, let’s run them. You don’t have to do anything special to run a unit
test; the test phase is a normal part of the Maven lifecycle. You run Maven tests whenever you run
mvn package or mvn install. If you would like to run all the lifecycle phases up to and including
the test phase, run mvn test:

$ mvn test
...
[INFO] [surefire:test]
[INFO] Surefire report directory: ~/examples/ch-custom/simple-weather/target/\
 surefire-reports

 T E S T S

Running org.sonatype.mavenbook.weather.yahoo.WeatherFormatterTest
0 INFO YahooParser - Creating XML Reader
177 INFO YahooParser - Parsing XML Response
239 INFO WeatherFormatter - Formatting Weather Data
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.547 sec
Running org.sonatype.mavenbook.weather.yahoo.YahooParserTest
475 INFO YahooParser - Creating XML Reader
483 INFO YahooParser - Parsing XML Response
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.018 sec

56

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

Executing mvn test from the command line caused Maven to execute all lifecycle phases up to the
test phase. The Maven Surefire plugin has a test goal which is bound to the test phase. This test
goal executes all of the unit tests this project can find under src/test/java with filenames matching
**/Test*.java, **/*Test.java and **/*TestCase.java. In the case of this project, you can
see that the Surefire plugin's test goal executed WeatherFormatterTest and YahooParserTest.
When the Maven Surefire plugin runs the JUnit tests, it also generates XML and text reports in the
${basedir}/target/surefire-reports directory. If your tests are failing, you should look in this
directory for details like stack traces and error messages generated by your unit tests.

4.12.1. Ignoring Test Failures

You will often find yourself developing on a system that has failing unit tests. If you are practicing
Test-Driven Development (TDD), you might use test failure as a measure of how close your project
is to completeness. If you have failing unit tests, and you would still like to produce build output, you
are going to have to tell Maven to ignore build failures. When Maven encounters a build failure, its
default behavior is to stop the current build. To continue building a project even when the Surefire plugin
encounters failed test cases, you’ll need to set the testFailureIgnore configuration property of the
Surefire plugin to true.

Example 4.17. Ignoring Unit Test Failures

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

The plugin documents (http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html) show
that this parameter declares an expression:

Example 4.18. Plugin Parameter Expressions

 testFailureIgnore Set this to true to ignore a failure during \

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html

57

 testing. Its use is NOT RECOMMENDED, but quite \
 convenient on occasion.

 * Type: boolean
 * Required: No
 * Expression: ${maven.test.failure.ignore}

This expression can be set from the command line using the -D parameter:

$ mvn test -Dmaven.test.failure.ignore=true

4.12.2. Skipping Unit Tests

You may want to configure Maven to skip unit tests altogether. Maybe you have a very large system
where the unit tests take minutes to complete and you don't want to wait for unit tests to complete before
producing output. You might be working with a legacy system that has a series of failing unit tests, and
instead of fixing the unit tests, you might just want to produce a JAR. Maven provides for the ability to
skip unit tests using the skip parameter of the Surefire plugin. To skip tests from the command-line,
simply add the maven.test.skip property to any goal:

$ mvn install -Dmaven.test.skip=true
...
[INFO] [compiler:testCompile]
[INFO] Not compiling test sources
[INFO] [surefire:test]
[INFO] Tests are skipped.
...

When the Surefire plugin reaches the test goal, it will skip the unit tests if the maven.test.skip
properties is set to true. Another way to configure Maven to skip unit tests is to add this configuration
to your project's pom.xml. To do this, you would add a plugin element to your build configuration.

Example 4.19. Skipping Unit Tests

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

58

4.13. Building a Packaged Command Line Application
In the Section 4.8, “Running the Simple Weather Program” section earlier in this chapter, we executed
our application using the Maven Exec plugin. Although that plugin executed the program and produced
some output, you shouldn’t look to Maven as an execution container for your applications. If you
are distributing this command-line application to others, you will probably want to distribute a JAR
or an archive as a ZIP or TAR’d GZIP file. This section outlines a process for using a predefined
assembly descriptor in the Maven Assembly plugin to produce a distributable JAR file, which contains
the project’s bytecode and all of the dependencies.

The Maven Assembly plugin is a plugin you can use to create arbitrary distributions for your
applications. You can use the Maven Assembly plugin to assemble the output of your project in any
format you desire by defining a custom assembly descriptor. In a later chapter we will show you how to
create a custom assembly descriptor which produces a more complex archive for the Simple Weather
application. In this chapter, we're going to use the predefined jar-with-dependencies format. To
configure the Maven Assembly Plugin, we need to add the following plugin configuration to our
existing build configuration in the pom.xml.

Example 4.20. Configuring the Maven Assembly Descriptor

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Once you’ve added this configuration, you can build the assembly by running the assembly:assembly
goal. In the following screen listing, the assembly:assembly goal is executed after the Maven build
reaches the install lifecycle phase:

$ mvn install assembly:assembly
...
[INFO] [jar:jar]
[INFO] Building jar:
~/examples/ch-custom/simple-weather/target/simple-weather-1.0.jar
[INFO] [assembly:assembly]
[INFO] Processing DependencySet (output=)
[INFO] Expanding: \

59

 .m2/repository/dom4j/dom4j/1.6.1/dom4j-1.6.1.jar into \
 /tmp/archived-file-set.1437961776.tmp
[INFO] Expanding: .m2/repository/commons-lang/commons-lang/2.1/\
 commons-lang-2.1.jar
 into /tmp/archived-file-set.305257225.tmp
... (Maven Expands all dependencies into a temporary directory) ...
[INFO] Building jar: \
 ~/examples/ch-custom/simple-weather/target/\
 simple-weather-1.0-jar-with-dependencies.jar

Once our assembly is assembled in target/simple-weather-1.0-jar-with-

dependencies.jar, we can run the Main class again from the command line. To run the simple
weather application’s Main class, execute the following commands from your project’s base directory:

$ cd target
$ java -cp simple-weather-1.0-jar-with-dependencies.jar \
 org.sonatype.mavenbook.weather.Main 10002
0 INFO YahooRetriever - Retrieving Weather Data
221 INFO YahooParser - Creating XML Reader
399 INFO YahooParser - Parsing XML Response
474 INFO WeatherFormatter - Formatting Weather Data

 Current Weather Conditions for:
 New York, NY, US

 Temperature: 44
 Condition: Fair
 Humidity: 40
 Wind Chill: 40

The jar-with-dependencies format creates a single JAR file that includes all of the bytecode from
the simple-weather project as well as the unpacked bytecode from all of the dependencies. This
somewhat unconventional format produces a 9 MiB JAR file containing approximately 5,290 classes,
but it does provide for an easy distribution format for applications you’ve developed with Maven. Later
in this book, we’ll show you how to create a custom assembly descriptor to produce a more standard
distribution.

4.13.1. Attaching the Assembly Goal to the Package Phase

In Maven 1, a build was customized by stringing together a series of plugin goals. Each plugin goal had
prerequisites and defined a relationship to other plugin goals. With the release of Maven 2, a lifecycle
was introduced and plugin goals are now associated with a series of phases in a default Maven build
lifecycle. The lifecycle provides a solid foundation that makes it easier to predict and manage the plugin
goals which will be executed in a given build. In Maven 1, plugin goals related to one another directly;
in Maven 2, plugin goals relate to a set of common lifecycle stages. While it is certainly valid to execute
a plugin goal directly from the command-line as we just demonstrated, it is more consistent with the
design of Maven to configure the Assembly plugin to execute the assembly:assembly goal during
a phase in the Maven lifecycle.

60

The following plugin configuration configures the Maven Assembly plugin to execute the attached
goal during the package phase of the Maven default build lifecycle. The attached goal does the same
thing as the assembly goal. To bind to assembly:attached goal to the package phase we use the
executions element under plugin in the build section of the project's POM.

Example 4.21. Configuring attached Goal Execution during the package Lifecycle Phase

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 <executions>
 <execution>
 <id>simple-command</id>
 <phase>package</phase>
 <goals>
 <goal>attached</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Once you have this configuration in your POM, all you need to do to generate the assembly is run mvn
package. The execution configuration will make sure that the assembly:attached goal is executed
when the Maven lifecycle transitions to the package phase of the lifecycle.

Chapter 5. A Simple Web Application
5.1. Introduction
In this chapter, we create a simple web application with the Maven Archetype plugin. We’ll run this
web application in a Servlet container named Jetty, add some dependencies, write a simple Servlet, and
generate a WAR file. At the end of this chapter, you will be able to start using Maven to accelerate the
development of web applications.

5.1.1. Downloading this Chapter's Example

The example in this chapter is generated with the Maven Archetype plugin. While you should be able to
follow the development of this chapter without the example source code, we recommend downloading
a copy of the example code to use as a reference. This chapter’s example project may be downloaded
with the book’s example code at:

http://www.sonatype.com/books/mvnex-book/mvnexbook-examples-0.3.1-project.zip

Unzip this archive in any directory, and then go to the ch-simple-web/ directory. There you will see
a directory named simple-webapp/, which contains the Maven project developed in this chapter.

5.2. Defining the Simple Web Application
We’ve purposefully kept this chapter focused on Plain-Old Web Applications (POWA)—a servlet and a
JavaServer Pages (JSP) page. We’re not going to tell you how to develop your Struts 2, Tapestry, Wicket,
Java Server Faces (JSF), or Waffle application in the next 20-odd pages, and we’re not going to get into
integrating an Inversion of Control (IoC) container such as Plexus, Guice, or the Spring Framework.
The goal of this chapter is to show you the basic facilities that Maven provides for developing web
applications—no more, no less. Later in this book, we’re going to take a look at developing two web
applications: one which that Hibernate, Velocity, and the Spring Framework; and the other that uses
Plexus.

5.3. Creating the Simple Web Project
To create your web application project, run mvn archetype:generate with an artifactId and
a groupId. Run archetype:generate as shown below, choose archetype #18 "maven-archetype-
webapp", and then press Y to confirm and create the new web application project:

$ mvn archetype:generate -DgroupId=org.sonatype.mavenbook.simpleweb \
 -DartifactId=simple-webapp \
 -DpackageName=org.sonatype.mavenbook \
 -Dversion=1.0-SNAPSHOT

62

...
[INFO] [archetype:generate {execution: default-cli}]
Choose archetype:
...
15: internal -> maven-archetype-quickstart ()
16: internal -> maven-archetype-site-simple (A simple site generation project)
17: internal -> maven-archetype-site (A more complex site project)
18: internal -> maven-archetype-webapp (A simple Java web application)
...
Choose a number: (...) 15: : 18
Confirm properties configuration:
groupId: org.sonatype.mavenbook.simpleweb
artifactId: simple-webapp
version: 1.0-SNAPSHOT
package: org.sonatype.mavenbook.simpleweb
 Y: : Y
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.simpleweb
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook.simpleweb
[INFO] Parameter: package, Value: org.sonatype.mavenbook.simpleweb
[INFO] Parameter: artifactId, Value: simple-webapp
[INFO] Parameter: basedir, Value: /private/tmp
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
...
[INFO] BUILD SUCCESSFUL

Once the Maven Archetype plugin creates the project, change directories into the simple-web directory
and take a look at the pom.xml. You should see the XML document shown in the following example:

Example 5.1. Initial POM for the simple-web project

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.simpleweb</groupId>
 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple-webapp Maven Webapp</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 </build>

63

</project>

Next, you will need to configure the Maven Compiler plugin to target Java 5. To do this, add the
plugins element to the initial POM as shown in Example 5.2, “POM for the simple-web project with
compiler configuration”.

Example 5.2. POM for the simple-web project with compiler configuration

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.simpleweb</groupId>
 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple-webapp Maven Webapp</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Notice the packaging element contains the value war. This packaging type is what configures Maven to
produce a web application archive in a WAR file. A project with war packaging is going to create a WAR
file in the target/ directory. The default name of this file is ${artifactId}-${version}.war. In
this project, the default WAR would be generated in target/simple-webapp-1.0-SNAPSHOT.war.
In the simple-webapp project, we’ve customized the name of the generated WAR file by adding
a finalName element inside of this project’s build configuration. With a finalName of simple-
webapp, the package phase produces a WAR file in target/simple-webapp.war.

64

5.4. Configuring the Jetty Plugin
Once you’ve compiled, tested, and packaged your web application, you’ll likely want to deploy it to a
servlet container and test the index.jsp that was created by the Maven Archetype plugin. Normally,
this would involve downloading something like Jetty or Apache Tomcat, unpacking a distribution,
copying your application’s WAR file to a webapps/ directory, and then starting your container.
Although you can still do such a thing, there is no need. Instead, you can use the Maven Jetty plugin
to run your web application within Maven. To do this, we’ll need to configure the Maven Jetty plugin
in our project’s pom.xml. Add the plugin element shown in the following example to your project’s
build configuration.

Example 5.3. Configuring the Jetty Plugin

<project>
 [...]
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Once you've configured the Maven Jetty Plugin in your project's pom.xml, you can then invoke the Run
goal of the Jetty plugin to start your web application in the Jetty Servlet container. Run mvn jetty:run
from the simple-webapp/ project directory as follows:

~/examples/ch-simple-web/simple-webapp $ mvn jetty:run
...
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: simple-webapp Maven Webapp
[INFO] Webapp source directory = \
 ~/svnw/sonatype/examples/ch-simple-web/simple-webapp/src/main/webapp
[INFO] web.xml file = \
 ~/svnw/sonatype/examples/ch-simple-web/\
simple-webapp/src/main/webapp/WEB-INF/web.xml
[INFO] Classes = ~/svnw/sonatype/examples/ch-simple-web/\
simple-webapp/target/classes
2007-11-17 22:11:50.532::INFO: Logging to STDERR via org.mortbay.log.StdErrLog
[INFO] Context path = /simple-webapp
[INFO] Tmp directory = determined at runtime
[INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] Webapp directory = \
 ~/svnw/sonatype/examples/ch-simple-web/simple-webapp/src/main/webapp

65

[INFO] Starting jetty 6.1.6rc1 ...
2007-11-17 22:11:50.673::INFO: jetty-6.1.6rc1
2007-11-17 22:11:50.846::INFO: No Transaction manager found
2007-11-17 22:11:51.057::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Warning
If you are running the Maven Jetty Plugin on a Windows platform you may need to move
your local Maven repository to a directory that does not contain spaces. Some readers have
reported issues on Jetty startup caused by a repository that was being stored under "C:
\Documents and Settings\<user>". The solution to this problem is to move your
local Maven repository to a directory that does not contain spaces and redefine the location
of your local repository in ~/.m2/settings.xml.

After Maven starts the Jetty Servlet container, load the URL http://localhost:8080/simple-webapp/ in a
web browser. The simple index.jsp generated by the Archetype is trivial; it contains a second-level
heading with the text "Hello World!". Maven expects the document root of the web application to be
stored in src/main/webapp. It is in this directory where you will find the index.jsp file shown in
Example 5.4, “Contents of src/main/webapp/index.jsp”.

Example 5.4. Contents of src/main/webapp/index.jsp

<html>
 <body>
 <h2>Hello World!</h2>
 </body>
</html>

In src/main/webapp/WEB-INF, we will find the smallest possible web application descriptor in
web.xml, shown in this next example:

Example 5.5. Contents of src/main/webapp/WEB-INF/web.xml

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
 <display-name>Archetype Created Web Application</display-name>
</web-app>

5.5. Adding a Simple Servlet
A web application with a single JSP page and no configured servlets is next to useless. Let’s add a simple
servlet to this application and make some changes to the pom.xml and web.xml to support this change.
First, we’ll need to create a new package under src/main/java named org.sonatype.mavenbook.web:

http://localhost:8080/simple-webapp/

66

$ mkdir -p src/main/java/org/sonatype/mavenbook/web
$ cd src/main/java/org/sonatype/mavenbook/web

Once you’ve created this package, change to the src/main/java/org/sonatype/mavenbook/web
directory and create a class named SimpleServlet in SimpleServlet.java, which contains the
code shown in the SimpleServlet class:

Example 5.6. SimpleServlet Class

package org.sonatype.mavenbook.web;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 PrintWriter out = response.getWriter();
 out.println("SimpleServlet Executed");
 out.flush();
 out.close();
 }
}

Our SimpleServlet class is just that: a servlet that prints a simple message to the response’s Writer.
To add this servlet to your web application and map it to a request path, add the servlet and servlet-
mapping elements shown in the following web.xml to your project’s web.xml file. The web.xml file
can be found in src/main/webapp/WEB-INF.

Example 5.7. Mapping the Simple Servlet

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
 <display-name>Archetype Created Web Application</display-name>
 <servlet>
 <servlet-name>simple</servlet-name>
 <servlet-class>org.sonatype.mavenbook.web.SimpleServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>simple</servlet-name>
 <url-pattern>/simple</url-pattern>
 </servlet-mapping>
</web-app>

67

Everything is in place to test this servlet; the class is in src/main/java and the web.xml has been
updated. Before we launch the Jetty plugin, compile your project by running mvn compile:

~/examples/ch-simple-web/simple-webapp $ mvn compile
...
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to \
~/examples/ch-simple-web/simple-webapp/target/classes
[INFO] --
[ERROR] BUILD FAILURE
[INFO] --
[INFO] Compilation failure

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[4,0] \
 package javax.servlet does not exist

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[5,0] \
 package javax.servlet.http does not exist

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[7,35] \
 cannot find symbol
 symbol: class HttpServlet
 public class SimpleServlet extends HttpServlet {

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[8,22] \
 cannot find symbol
 symbol : class HttpServletRequest
 location: class org.sonatype.mavenbook.web.SimpleServlet

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[9,22] \
 cannot find symbol
 symbol : class HttpServletResponse
 location: class org.sonatype.mavenbook.web.SimpleServlet

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[10,15] \
 cannot find symbol
 symbol : class ServletException
 location: class org.sonatype.mavenbook.web.SimpleServlet

The compilation fails because your Maven project doesn't have a dependency on the Servlet API. In the
next section, we'll add the Servlet API to this project's POM.

5.6. Adding J2EE Dependencies
To write a servlet, we’ll need to add the Servlet API as a project dependency. To add the Servlet
specification API as a dependency to your project’s POM, add the dependency element as shown in
this next example:

Example 5.8. Add the Servlet 2.4 Specification as a Dependency

<project>
 [...]

68

 <dependencies>
 [...]
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 [...]
</project>

It is also worth pointing out that we have used the provided scope for this dependency. This tells
Maven that the jar is "provided" by the container and thus should not be included in the war. If you
were interested in writing a custom JSP tag for this simple web application, you would need to add a
dependency on the JSP 2.0 spec. Use the configuration shown in this example:

Example 5.9. Adding the JSP 2.0 Specification as a Dependency

<project>
 [...]
 <dependencies>
 [...]
 <dependency>
 <groupId>javax.servlet.jsp</groupId>
 <artifactId>jsp-api</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 [...]
</project>

Once you've added the Servlet specification as a dependency, run mvn clean install followed by
mvn jetty:run.

[tobrien@t1 simple-webapp]$ mvn clean install
...
[tobrien@t1 simple-webapp]$ mvn jetty:run
[INFO] [jetty:run]
...
2007-12-14 16:18:31.305::INFO: jetty-6.1.6rc1
2007-12-14 16:18:31.453::INFO: No Transaction manager found
2007-12-14 16:18:32.745::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

At this point, you should be able to retrieve the output of the SimpleServlet. From the command line,
you can use curl to print the output of this servlet to standard output:

~/examples/ch-simple-web $ curl http://localhost:8080/simple-webapp/simple

69

SimpleServlet Executed

5.7. Conclusion
After reading this chapter, you should be able to bootstrap a simple web application. This chapter didn't
dwell on the million different ways to create a complete web application, other chapters provide a
more comprehensive overview of projects that involve some of the more popular web frameworks and
technologies.

Chapter 6. A Multi-module Project
6.1. Introduction
In this chapter, we create a multi-module project that combines the examples from the two previous
chapters. The simple-weather code developed in Chapter 4, Customizing a Maven Project will be
combined with the simple-webapp project defined in Chapter 5, A Simple Web Application to create
a web application that retrieves and displays weather forecast information on a web page. At the end of
this chapter, you will be able to use Maven to develop complex, multi-module projects.

6.1.1. Downloading this Chapter's Example

The multi-module project developed in this example consists of modified versions of the projects
developed in Chapters 4 and 5, and we are not using the Maven Archetype plugin to generate this
multi-module project. We strongly recommend downloading a copy of the example code to use as a
supplemental reference while reading the content in this chapter. This chapter’s example project may
be downloaded with the book’s example code at:

http://www.sonatype.com/books/mvnex-book/mvnexbook-examples-0.3.1-project.zip

Unzip this archive in any directory, and then go to the ch-multi/ directory. There you will see a
directory named simple-parent/, which contains the multi-module Maven project developed in
this chapter. In this directory, you will see a pom.xml and the two submodule directories, simple-
weather/ and simple-webapp/.

6.2. The Simple Parent Project
A multi-module project is defined by a parent POM referencing one or more submodules. In the
simple-parent/ directory, you will find the parent POM (also called the top-level POM) in simple-
parent/pom.xml. See Example 6.1, “simple-parent Project POM”.

Example 6.1. simple-parent Project POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.mavenbook.multi</groupId>
 <artifactId>simple-parent</artifactId>
 <packaging>pom</packaging>
 <version>1.0</version>
 <name>Multi Chapter Simple Parent Project</name>

72

 <modules>
 <module>simple-weather</module>
 <module>simple-webapp</module>
 </modules>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Notice that the parent defines a set of Maven coordinates: the groupId is
org.sonatype.mavenbook.multi, the artifactId is simple-parent, and the version is 1.0.
The parent project doesn’t create a JAR or a WAR like our previous projects; instead, it is simply a
POM that refers to other Maven projects. The appropriate packaging for a project like simple-parent
that simply provides a Project Object Model is pom. The next section in the pom.xml lists the project’s
submodules. These modules are defined in the modules element, and each module element corresponds
to a subdirectory of the simple-parent/ directory. Maven knows to look in these directories for
pom.xml files, and it will add submodules to the list of Maven projects included in a build.

Lastly, we define some settings which will be inherited by all submodules. The simple-parent build
configuration configures the target for all Java compilation to be the Java 5 JVM. Since the compiler
plugin is bound to the lifecycle by default, we can use the pluginManagement section do to this. We
will discuss pluginManagement in more detail in later chapters, but the separation between providing
configuration to default plugins and actually binding plugins is much easier to see when they are
separated this way. The dependencies element adds JUnit 3.8.1 as a global dependency. Both the build
configuration and the dependencies are inherited by all submodules. Using POM inheritance allows you
to add common dependencies for universal dependencies like JUnit or Log4J.

73

6.3. The Simple Weather Module
The first submodule we’re going to look at is the simple-weather submodule. This submodule
contains all of the classes that take care of interacting with and parsing the Yahoo! Weather feeds.

Example 6.2. simple-weather Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.multi</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>

 <name>Multi Chapter Simple Weather API</name>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 <dependency>
 <groupId>dom4j</groupId>
 <artifactId>dom4j</artifactId>
 <version>1.6.1</version>
 </dependency>
 <dependency>
 <groupId>jaxen</groupId>
 <artifactId>jaxen</artifactId>
 <version>1.1.1</version>
 </dependency>

74

 <dependency>
 <groupId>velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

In simple-weather’s pom.xml file, we see this module referencing a parent POM using a set
of Maven coordinates. The parent POM for simple-weather is identified by a groupId of
org.sonatype.mavenbook.multi, an artifactId of simple-parent, and a version of 1.0.
See Example 6.3, “The WeatherService class”.

Example 6.3. The WeatherService class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

public class WeatherService {

 public WeatherService() {}

 public String retrieveForecast(String zip) throws Exception {
 // Retrieve Data
 InputStream dataIn = new YahooRetriever().retrieve(zip);

 // Parse Data
 Weather weather = new YahooParser().parse(dataIn);

 // Format (Print) Data
 return new WeatherFormatter().format(weather);
 }
}

The WeatherService class is defined in src/main/java/org/sonatype/mavenbook/weather,
and it simply calls out to the three objects defined in Chapter 4, Customizing a Maven Project. In this
chapter’s example, we’re creating a separate project that contains service objects that are referenced in
the web application project. This is a common model in enterprise Java development; often a complex
application consists of more than just a single, simple web application. You might have an enterprise
application that consists of multiple web applications and some command-line applications. Often,
you’ll want to refactor common logic to a service class that can be reused across a number of projects.
This is the justification for creating a WeatherService class; by doing so, you can see how the
simple-webapp project references a service object defined in simple-weather.

75

The retrieveForecast() method takes a String containing a zip code. This zip code parameter
is then passed to the YahooRetriever’s retrieve() method, which gets the XML from Yahoo!
Weather. The XML returned from YahooRetriever is then passed to the parse() method on
YahooParser which returns a Weather object. This Weather object is then formatted into a
presentable String by the WeatherFormatter.

6.4. The Simple Web Application Module
The simple-webapp module is the second submodule referenced in the simple-parent project.
This web application project depends upon the simple-weather module, and it contains some simple
servlets that present the results of the Yahoo! weather service query.

Example 6.4. simple-webapp Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.multi</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <name>simple-webapp Maven Webapp</name>
 <dependencies>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.multi</groupId>
 <artifactId>simple-weather</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

76

</project>

This simple-webapp module defines a very simple servlet that reads a zip code from an HTTP request,
calls the WeatherService shown in Example 6.3, “The WeatherService class”, and prints the results
to the response’s Writer.

Example 6.5. simple-webapp WeatherServlet

package org.sonatype.mavenbook.web;

import org.sonatype.mavenbook.weather.WeatherService;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class WeatherServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String zip = request.getParameter("zip");
 WeatherService weatherService = new WeatherService();
 PrintWriter out = response.getWriter();
 try {
 out.println(weatherService.retrieveForecast(zip));
 } catch(Exception e) {
 out.println("Error Retrieving Forecast: " + e.getMessage());
 }
 out.flush();
 out.close();
 }
}

In WeatherServlet, we instantiate an instance of the WeatherService class defined in simple-
weather. The zip code supplied in the request parameter is passed to the retrieveForecast()
method and the resulting test is printed to the response's Writer.

Finally, to tie all of this together is the web.xml for simple-webapp in src/main/webapp/WEB-
INF. The servlet and servlet-mapping elements in the web.xml shown in Example 6.6, “simple-
webapp web.xml” map the request path /weather to the WeatherServlet.

Example 6.6. simple-webapp web.xml

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
 <display-name>Archetype Created Web Application</display-name>
 <servlet>
 <servlet-name>simple</servlet-name>

77

 <servlet-class>org.sonatype.mavenbook.web.SimpleServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>weather</servlet-name>
 <servlet-class>org.sonatype.mavenbook.web.WeatherServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>simple</servlet-name>
 <url-pattern>/simple</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>weather</servlet-name>
 <url-pattern>/weather</url-pattern>
 </servlet-mapping>
</web-app>

6.5. Building the Multimodule Project
With the simple-weather project containing all the general code for interacting with the Yahoo!
Weather service and the simple-webapp project containing a simple servlet, it is time to compile and
package the application into a WAR file. To do this, you will want to compile and install both projects
in the appropriate order; since simple-webapp depends on simple-weather, the simple-weather
JAR needs to be created before the simple-webapp project can compile. To do this, you will run mvn
clean install command from the simple-parent project:

~/examples/ch-multi/simple-parent$ mvn clean install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Simple Parent Project
[INFO] simple-weather
[INFO] simple-webapp Maven Webapp
[INFO] --
[INFO] Building simple-weather
[INFO] task-segment: [clean, install]
[INFO] --
[...]
[INFO] [install:install]
[INFO] Installing simple-weather-1.0.jar to simple-weather-1.0.jar
[INFO] --
[INFO] Building simple-webapp Maven Webapp
[INFO] task-segment: [clean, install]
[INFO] --
[...]
[INFO] [install:install]
[INFO] Installing simple-webapp.war to simple-webapp-1.0.war
[INFO]
[INFO] --
[INFO] Reactor Summary:
[INFO] --
[INFO] Simple Parent Project SUCCESS [3.041s]
[INFO] simple-weather SUCCESS [4.802s]
[INFO] simple-webapp Maven Webapp SUCCESS [3.065s]

78

[INFO] --

When Maven is executed against a project with submodules, Maven first loads the parent POM and
locates all of the submodule POMs. Maven then puts all of these project POMs into something called the
Maven Reactor which analyzes the dependencies between modules. The Reactor takes care of ordering
components to ensure that interdependent modules are compiled and installed in the proper order.

Note

The Reactor preserves the order of modules as defined in the POM unless changes need to
be made. A helpful mental model for this is to picture that modules with dependencies on
sibling projects are "pushed down" the list until the dependency ordering is satisfied. On
rare occasions, it may be handy to rearrange the module order of your build -- for example
if you want a frequently unstable module towards the beginning of the build.

Once the Reactor figures out the order in which projects must be built, Maven then executes the specified
goals for every module in a multi-module build. In this example, you can see that Maven builds simple-
weather before simple-webapp effectively executing mvn clean install for each submodule.

Note

When you run Maven from the command line you'll frequently want to specify the clean
lifecycle phase before any other lifecycle stages. When you specify clean, you make sure
that Maven is going to remove old output before it compiles and packages an application.
Running clean isn't necessary, but it is a useful precaution to make sure that you are
performing a "clean build".

6.6. Running the Web Application
Once the multi-module project has been installed with mvn clean install from the parent project,
simple-project, you can then change directories into the simple-webapp project and run the Run
goal of the Jetty plugin:

~/examples/ch-multi/simple-parent/simple-webapp $ mvn jetty:run
[INFO] --
[INFO] Building simple-webapp Maven Webapp
[INFO] task-segment: [jetty:run]
[INFO] --
[...]
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: simple-webapp Maven Webapp
[...]
[INFO] Webapp directory = ~/examples/ch-multi/simple-parent/\
 simple-webapp/src/main/webapp
[INFO] Starting jetty 6.1.6rc1 ...
2007-11-18 1:58:26.980::INFO: jetty-6.1.6rc1
2007-11-18 1:58:26.125::INFO: No Transaction manager found

79

2007-11-18 1:58:27.633::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Once Jetty has started, load http://localhost:8080/simple-webapp/weather?zip=01201 in a browser and
you should see the formatted weather output.

http://localhost:8080/simple-webapp/weather?zip=01201

Chapter 7. Multi-module Enterprise
Project
7.1. Introduction
In this chapter, we create a multi-module project that evolves the examples from Chapter 6, A Multi-
module Project and Chapter 5, A Simple Web Application into a project that uses the Spring Framework
and Hibernate to create both a simple web application and a command-line utility to read data from
the Yahoo! Weather feed. The simple-weather code developed in Chapter 4, Customizing a Maven
Project will be combined with the simple-webapp project defined in Chapter 5, A Simple Web
Application. In the process of creating this multi-module project, we’ll explore Maven and discuss the
different ways it can be used to create modular projects that encourage reuse.

7.1.1. Downloading this Chapter's Example

The multi-module project developed in this example consists of modified versions of the projects
developed in Chapter 4, Customizing a Maven Project and Chapter 5, A Simple Web Application,
and we are not using the Maven Archetype plug-in to generate this multi-module project. We strongly
recommend downloading a copy of the example code to use as a supplemental reference while reading
the content in this chapter. Without the examples, you won't be able to recreate this chapter's example
code. This chapter’s example project may be downloaded with the book’s example code at:

http://www.sonatype.com/books/mvnex-book/mvnexbook-examples-0.3.1-project.zip

Unzip this archive in any directory, and then go to the ch-multi-spring/ directory. There
you will see a directory named simple-parent/ that contains the multi-module Maven project
developed in this chapter. In the simple-parent/ project directory you will see a pom.xml and
the five submodule directories simple-model/, simple-persist/, simple-command/, simple-
weather/ and simple-webapp/.

7.1.2. Multi-module Enterprise Project

Presenting the complexity of a massive Enterprise-level project far exceeds the scope of this book.
Such projects are characterized by multiple databases, integration with external systems, and subprojects
which may be divided by departments. These projects usually span thousands of lines of code, and
involve the effort of tens or hundreds of software developers. While such a complete example is outside
the scope of this book, we can provide you with a sample project that suggests the complexity of a
larger Enterprise application. In the conclusion we suggest some possibilities for modularity beyond
that presented in this chapter.

In this chapter, we're going to look at a multi-module Maven project that will produce two applications:
a command-line query tool for the Yahoo! Weather feed and a web application which queries the Yahoo!

82

Weather feed. Both of these applications will store the results of queries in an embedded database. Each
will allow the user to retrieve historical weather data from this embedded database. Both applications
will reuse application logic and share a persistence library. This chapter's example builds upon the
Yahoo! Weather parsing code introduced in Chapter 4, Customizing a Maven Project. This project
is divided into five submodules shown in Figure 7.1, “Multi-module Enterprise Application Module
Relationships”.

com.sonatype.maven
simple-project

com.sonatype.maven
simple-model

com.sonatype.maven
simple-webapp

com.sonatype.maven
simple-weather

Super POM= Dependency
= Transitive Dependency
= Module of
= Inherits from

com.sonatype.maven
simple-persist

com.sonatype.maven
simple-command

Figure 7.1. Multi-module Enterprise Application Module Relationships

In Figure 7.1, “Multi-module Enterprise Application Module Relationships”, you can see that there are
five submodules of simple-parent, they are:

simple-model
This module defines a simple object model which models the data returned from the Yahoo!
Weather feed. This object model contains the Weather, Condition, Atmosphere, Location,
and Wind objects. When our application parses the Yahoo! Weather feed, the parsers defined
in simple-weather will parse the XML and create Weather objects which are then used by
the application. This project contains model objects annotated with Hibernate 3 Annotations.
These annotations are used by the logic in simple-persist to map each model object to a
corresponding table in a relational database.

83

simple-weather
This module contains all of the logic required to retrieve data from the Yahoo! Weather feed and
parse the resulting XML. The XML returned from this feed is converted into the model objects
defined in simple-model. simple-weather has a dependency on simple-model. simple-
weather defines a WeatherService object which is referenced by both the simple-command
and simple-webapp projects.

simple-persist
This module contains some Data Access Objects (DAO) which are configured to store Weather
objects in an embedded database. Both of the applications defined in this multi-module project
will use the DAOs defined in simple-persist to store data in an embedded database. The
DAOs defined in this project understand and return the model objects defined in simple-
model. simple-persist has a direct dependency on simple-model and it depends upon the
Hibernate Annotations present on the model objects.

simple-webapp
The web application project contains two Spring MVC Controller implementations which use the
WeatherService defined in simple-weather and the DAOs defined in simple-persist.
simple-webapp has a direct dependency on simple-weather and simple-persist; it has
a transitive dependency on simple-model.

simple-command
This module contains a simple command-line tool which can be used to query the Yahoo!
Weather feed. This project contains a class with a static main() function and interacts with the
WeatherService defined in simple-weather and the DAOs defined in simple-persist.
simple-command has a direct dependency on simple-weather and simple-persist; is has
a transitive dependency on simple-model.

This chapter contains a contrived example simple enough to introduce in a book, yet complex enough
to justify a set of five submodules. Our contrived example has a model project with five classes, a
persistence library with two service classes, and a weather parsing library with five or six classes, but
a real-world system might have a model project with a hundred objects, several persistence libraries,
and service libraries spanning multiple departments. Although we’ve tried to make sure that the code
contained in this example is straightforward enough to comprehend in a single sitting, we’ve also gone
out of our way to build a modular project. You might be tempted to look at the examples in this chapter
and walk away with the idea that Maven encourages too much complexity given that our model project
has only five classes. Although using Maven does suggest a certain level of modularity, do realize that
we’ve gone out of our way to complicate our simple example projects for the purpose of demonstrating
Maven’s multi-module features.

7.1.3. Technology Used in this Example

This chapter's example involves some technology which, while popular, is not directly related to Maven.
These technologies are the Spring Framework and Hibernate. The Spring Framework is an Inversion

84

of Control (IoC) container and a set of frameworks that aim to simplify interaction with various J2EE
libraries. Using the Spring Framework as a foundational framework for application development gives
you access to a number of helpful abstractions that can take much of the meddlesome busywork out of
dealing with persistence frameworks like Hibernate or iBatis or enterprise APIs like JDBC, JNDI, and
JMS. The Spring Framework has grown in popularity over the past few years as a replacement for the
heavy weight enterprise standards coming out of Sun Microsystems. Hibernate is a widely used Object-
Relational Mapping framework which allows you to interact with a relational database as if it were a
collection of Java objects. This example focuses on building a simple web application and a command-
line application that uses the Spring Framework to expose a set of reusable components to applications
and which also uses Hibernate to persist weather data in an embedded database.

We’ve decided to include references to these frameworks to demonstrate how one would construct
projects using these technologies when using Maven. Although we make brief efforts to introduce
these technologies throughout this chapter, we will not go out of our way to fully explain these
technologies. For more information about the Spring Framework, please see the project’s web site
at http://www.springsource.org/documentation1. For more information about Hibernate and Hibernate
Annotations, please see the project’s web site at http://www.hibernate.org. This chapter uses Hyper-
threaded Structured Query Language Database (HSQLDB) as an embedded database; for more
information about this database, see the project’s web site at http://hsqldb.org2.

7.2. The Simple Parent Project
This simple-parent project has a pom.xml that references five submodules: simple-

command, simple-model, simple-weather, simple-persist, and simple-webapp. The top-
level pom.xml is shown in Example 7.1, “simple-parent Project POM”.

Example 7.1. simple-parent Project POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-parent</artifactId>
 <packaging>pom</packaging>
 <version>1.0</version>
 <name>Multi-Spring Chapter Simple Parent Project</name>

 <modules>
 <module>simple-command</module>
 <module>simple-model</module>
 <module>simple-weather</module>
 <module>simple-persist</module>

1 http://www.springframework.org/
2 http://hsqldb.org/

http://www.springframework.org/
http://www.hibernate.org
http://hsqldb.org/
http://www.springframework.org/
http://hsqldb.org/

85

 <module>simple-webapp</module>
 </modules>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Note
If you are already familiar with Maven POMs, you might notice that this top-level POM
does not define a dependencyManagement element. The dependencyManagement
element allows you to define dependency versions in a single, top-level POM, and it is
introduced in Chapter 8, Optimizing and Refactoring POMs.

Note the similarities of this parent POM to the parent POM defined in Example 6.1, “simple-parent
Project POM”. The only real difference between these two POMs is the list of submodules. Where that
example only listed two submodules, this parent POM lists five submodules. The next few sections
explore each of these five submodules in some detail. Because our example uses Java annotations, we've
configured the compiler to target the Java 5 JVM.

7.3. The Simple Model Module
The first thing most enterprise projects need is an object model. An object model captures the core set
of domain objects in any system. A banking system might have an object model which consists of an
Account, Customer, and Transaction object, or a system to capture and communicate sports scores
might have a Team and a Game object. Whatever it is, there's a good chance that you've modeled the
concepts in your system in an object model. It is a common practice in Maven projects to separate

86

this project into a separate project which is widely referenced. In this system we are capturing each
query to the Yahoo! Weather feed with a Weather object which references four other objects. Wind
direction, chill, and speed are stored in a Wind object. Location data including the zip code, city, region,
and country are stored in a Location class. Atmospheric conditions such as the humidity, maximum
visibility, barometric pressure, and whether the pressure is rising or falling is stored in an Atmosphere
class. A textual description of conditions, the temperature, and the date of the observation is stored in
a Condition class.

id
location
condition
wind
atmosphere

Weather

zip
city
region
country

Location

id
text
code
temp
date

Condition

id
chill
direction
speed

Wind

id
humidity
visibility
pressure
rising

Atmosphere

Figure 7.2. Simple Object Model for Weather Data

The pom.xml file for this simple model object contains one dependency that bears some
explanation. Our object model is annotated with Hibernate Annotations. We use these annotations
to map the model objects in this model to tables in a relational database. The dependency is
org.hibernate:hibernate-annotations:3.3.0.ga. Take a look at the pom.xml shown in
Example 7.2, “simple-model pom.xml”, and then look at the next few examples for some illustrations
of these annotations.

Example 7.2. simple-model pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

87

 <artifactId>simple-model</artifactId>
 <packaging>jar</packaging>

 <name>Simple Object Model</name>

 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 </dependencies>
</project>

In src/main/java/org/sonatype/mavenbook/weather/model, we have Weather.java,
which contains the annotated Weather model object. The Weather object is a simple Java bean. This
means that we have private member variables like id, location, condition, wind, atmosphere,
and date exposed with public getter and setter methods that adhere to the following pattern: if a property
is named name, there will be a public no-arg getter method named getName(), and there will be a one-
argument setter named setName(String name). Although we show the getter and setter method for
the id property, we’ve omitted most of the getters and setters for most of the other properties to save a
few trees. See Example 7.3, “Annotated Weather Model Object”.

Example 7.3. Annotated Weather Model Object

package org.sonatype.mavenbook.weather.model;

import javax.persistence.*;

import java.util.Date;

@Entity
@NamedQueries({
 @NamedQuery(name="Weather.byLocation",
 query="from Weather w where w.location = :location")
})
public class Weather {

 @Id
 @GeneratedValue(strategy=GenerationType.IDENTITY)
 private Integer id;

 @ManyToOne(cascade=CascadeType.ALL)
 private Location location;

 @OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
 private Condition condition;

88

 @OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
 private Wind wind;

 @OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
 private Atmosphere atmosphere;

 private Date date;

 public Weather() {}

 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }

 // All getter and setter methods omitted...
}

In the Weather class, we are using Hibernate annotations to provide guidance to the simple-persist
project. These annotations are used by Hibernate to map an object to a table in a relational database.
Although a full explanation of Hibernate annotations is beyond the scope of this chapter, here is a brief
explanation for the curious. The @Entity annotation marks this class as a persistent entity. We’ve
omitted the @Table annotation on this class, so Hibernate is going to use the name of the class as
the name of the table to map Weather to. The @NamedQueries annotation defines a query that is
used by the WeatherDAO in simple-persist. The query language in the @NamedQuery annotation
is written in something called Hibernate Query Language (HQL). Each member variable is annotated
with annotations that define the type of column and any relationships implied by that column:

Id

The id property is annotated with @Id. This marks the id property as the property that contains
the primary key in a database table. The @GeneratedValue controls how new primary key
values are generated. In the case of id, we’re using the IDENTITY GenerationType, which
will use the underlying database’s identity generation facilities.

Location

Each Weather object instance corresponds to a Location object. A Location object represents
a zip code, and the @ManyToOne makes sure that Weather objects that point to the same
Location object reference the same instance. The cascade attribute of the @ManyToOne makes
sure that we persist a Location object every time we persist a Weather object.

Condition, Wind, Atmosphere
Each of these objects is mapped as a @OneToOne with the CascadeType of ALL. This means
that every time we save a Weather object, we’ll be inserting a row into the Weather table, the
Condition table, the Wind table, and the Atmosphere table.

Date

Date is not annotated. This means that Hibernate is going to use all of the column defaults to
define this mapping. The column name is going to be date, and the column type is going to be
the appropriate time to match the Date object.

89

Note
If you have a property you wish to omit from a table mapping, you would annotate
that property with @Transient.

Next, take a look at one of the secondary model objects, Condition, shown in Example 7.4, “simple-
model's Condition model object.”. This class also resides in src/main/java/org/sonatype/
mavenbook/weather/model.

Example 7.4. simple-model's Condition model object.

package org.sonatype.mavenbook.weather.model;

import javax.persistence.*;

@Entity
public class Condition {

 @Id
 @GeneratedValue(strategy=GenerationType.IDENTITY)
 private Integer id;

 private String text;
 private String code;
 private String temp;
 private String date;

 @OneToOne(cascade=CascadeType.ALL)
 @JoinColumn(name="weather_id", nullable=false)
 private Weather weather;

 public Condition() {}

 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }

 // All getter and setter methods omitted...
}

The Condition class resembles the Weather class. It is annotated as an @Entity, and it has similar
annotations on the id property. The text, code, temp, and date properties are all left with the
default column settings, and the weather property is annotated with a @OneToOne annotation and
another annotation that references the associated Weather object with a foreign key column named
weather_id.

7.4. The Simple Weather Module
The next module we’re going to examine could be considered something of a “service.” The Simple
Weather module is the module that contains all of the logic necessary to retrieve and parse the data from
the Yahoo! Weather RSS feed. Although Simple Weather contains three Java classes and one JUnit test,

90

it is going to present a single component, WeatherService, to both the Simple Web Application and
the Simple Command-line Utility. Very often an enterprise project will contain several API modules
that contain critical business logic or logic that interacts with external systems. A banking system might
have a module that retrieves and parses data from a third-party data provider, and a system to display
sports scores might interact with an XML feed that presents real-time scores for basketball or soccer.
In Example 7.5, “simple-weather Module POM”, this module encapsulates all of the network activity
and XML parsing that is involved in the interaction with Yahoo! Weather. Other modules can depend
on this module and simply call out to the retrieveForecast() method on WeatherService, which
takes a zip code as an argument and which returns a Weather object.

Example 7.5. simple-weather Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>

 <name>Simple Weather API</name>

 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-model</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 <dependency>
 <groupId>dom4j</groupId>
 <artifactId>dom4j</artifactId>
 <version>1.6.1</version>
 </dependency>
 <dependency>
 <groupId>jaxen</groupId>
 <artifactId>jaxen</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>

91

 <version>1.3.2</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The simple-weather POM extends the simple-parent POM, sets the packaging to jar, and then
adds the following dependencies:

org.sonatype.mavenbook.multispring:simple-model:1.0

simple-weather parses the Yahoo! Weather RSS feed into a Weather object. It has a direct
dependency on simple-model.

log4j:log4j:1.2.14

simple-weather uses the Log4J library to print log messages.

dom4j:dom4j:1.6.1 and jaxen:jaxen:1.1.1

Both of these dependencies are used to parse the XML returned from Yahoo! Weather.

org.apache.commons:commons-io:1.3.2 (scope=test)

This test-scoped dependency is used by the YahooParserTest.

Next is the WeatherService class, shown in Example 7.6, “The WeatherService class”. This class
is going to look very similar to the WeatherService class from Example 6.3, “The WeatherService
class”. Although the WeatherService is the same, there are some subtle differences in this chapter’s
example. This version’s retrieveForecast() method returns a Weather object, and the formatting
is going to be left to the applications that call WeatherService. The other major change is that the
YahooRetriever and YahooParser are both bean properties of the WeatherService bean.

Example 7.6. The WeatherService class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherService {

 private YahooRetriever yahooRetriever;
 private YahooParser yahooParser;

 public WeatherService() {}

 public Weather retrieveForecast(String zip) throws Exception {
 // Retrieve Data
 InputStream dataIn = yahooRetriever.retrieve(zip);

 // Parse DataS
 Weather weather = yahooParser.parse(zip, dataIn);

92

 return weather;
 }

 public YahooRetriever getYahooRetriever() {
 return yahooRetriever;
 }

 public void setYahooRetriever(YahooRetriever yahooRetriever) {
 this.yahooRetriever = yahooRetriever;
 }

 public YahooParser getYahooParser() {
 return yahooParser;
 }

 public void setYahooParser(YahooParser yahooParser) {
 this.yahooParser = yahooParser;
 }
}

Finally, in this project we have an XML file that is used by the Spring Framework to create
something called an ApplicationContext. First, some explanation: both of our applications, the
web application and the command-line utility, need to interact with the WeatherService class, and
they both do so by retrieving an instance of this class from a Spring ApplicationContext using
the name weatherService. Our web application uses a Spring MVC controller that is associated
with an instance of WeatherService, and our command-line utility loads the WeatherService
from an ApplicationContext in a static main() function. To encourage reuse, we’ve included
an applicationContext-weather.xml file in src/main/resources, which is available on the
classpath. Modules that depend on the simple-weather module can load this application context using
the ClasspathXmlApplicationContext in the Spring Framework. They can then reference a named
instance of the WeatherService named weatherService.

Example 7.7. Spring Application Context for the simple-weather Module

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 default-lazy-init="true">

 <bean id="weatherService"
 class="org.sonatype.mavenbook.weather.WeatherService">
 <property name="yahooRetriever" ref="yahooRetriever"/>
 <property name="yahooParser" ref="yahooParser"/>
 </bean>

 <bean id="yahooRetriever"
 class="org.sonatype.mavenbook.weather.YahooRetriever"/>

93

 <bean id="yahooParser"
 class="org.sonatype.mavenbook.weather.YahooParser"/>
</beans>

This document defines three beans: yahooParser, yahooRetriever, and weatherService. The
weatherService bean is an instance of WeatherService, and this XML document populates
the yahooParser and yahooRetriever properties with references to the named instances of the
corresponding classes. Think of this applicationContext-weather.xml file as defining the
architecture of a subsystem in this multi-module project. Projects like simple-webapp and simple-
command can reference this context and retrieve an instance of WeatherService which already has
relationships to instances of YahooRetriever and YahooParser.

7.5. The Simple Persist Module
This module defines two very simple Data Access Objects (DAOs). A DAO is an object that provides an
interface for persistence operations. In an application that makes use of an Object-Relational Mapping
(ORM) framework such as Hibernate, DAOs are usually defined around objects. In this project, we
are defining two DAO objects: WeatherDAO and LocationDAO. The WeatherDAO class allows us to
save a Weather object to a database and retrieve a Weather object by id, and to retrieve Weather
objects that match a specific Location. The LocationDAO has a method that allows us to retrieve a
Location object by zip code. First, let’s take a look at the simple-persist POM in Example 7.8,
“simple-persist POM”.

Example 7.8. simple-persist POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-persist</artifactId>
 <packaging>jar</packaging>

 <name>Simple Persistence API</name>

 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-model</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>

94

 <artifactId>hibernate</artifactId>
 <version>3.2.5.ga</version>
 <exclusions>
 <exclusion>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 </dependencies>
</project>

This POM file references simple-parent as a parent POM, and it defines a few dependencies. The
dependencies listed in simple-persist's POM are:

org.sonatype.mavenbook.multispring:simple-model:1.0

Just like the simple-weather module, this persistence module references the core model
objects defined in simple-model.

org.hibernate:hibernate:3.2.5.ga

We define a dependency on Hibernate version 3.2.5.ga, but notice that we’re excluding
a dependency of Hibernate. We’re doing this because the javax.transaction:javax
dependency is not available in the public Maven repository. This dependency happens to be one
of those Sun dependencies that has not yet made it into the free central Maven repository. To
avoid an annoying message telling us to go download these nonfree dependencies, we simple
exclude this dependency from Hibernate and add a dependency on...

javax.servlet:servlet-api:2.4

Since this project contains a Servlet, we need to include the Servlet API version 2.4.

95

org.springframework:spring:2.0.7

This includes the entire Spring Framework as a dependency.

Note
It is generally a good practice to depend on only the components of Spring you
happen to be using. The Spring Framework project has been nice enough to create
focused artifacts such as spring-hibernate3.

Why depend on Spring? When it comes to Hibernate integration, Spring allows us to leverage
helper classes such as HibernateDaoSupport. For an example of what is possible with the help of
HibernateDaoSupport, take a look at the code for the WeatherDAO in Example 7.9, “simple-persist's
WeatherDAO Class”.

Example 7.9. simple-persist's WeatherDAO Class

package org.sonatype.mavenbook.weather.persist;

import java.util.ArrayList;
import java.util.List;

import org.hibernate.Query;
import org.hibernate.Session;
import org.springframework.orm.hibernate3.HibernateCallback;
import org.springframework.orm.hibernate3.support.HibernateDaoSupport;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherDAO extends HibernateDaoSupport {

 public WeatherDAO() {}

 public void save(Weather weather) {
 getHibernateTemplate().save(weather);
 }

 public Weather load(Integer id) {
 return (Weather) getHibernateTemplate().load(Weather.class, id);
 }

 @SuppressWarnings("unchecked")
 public List<Weather> recentForLocation(final Location location) {
 return (List<Weather>) getHibernateTemplate().execute(

 new HibernateCallback() {
 public Object doInHibernate(Session session) {
 Query query = getSession().getNamedQuery("Weather.byLocation");
 query.setParameter("location", location);
 return new ArrayList<Weather>(query.list());
 }
 });

96

 }
}

That's it. No really, you are done writing a class that can insert new rows, select by primary key, and
find all rows in Weather that join to an id in the Location table. Clearly, we can't stop this book and
insert the five hundred pages it would take to get you up to speed on the intricacies of Hibernate, but
we can do some very quick explanation:

This class extends HibernateDaoSupport. What this means is that the class is going to be
associated with a Hibernate SessionFactory which it is going to use to create Hibernate
Session objects. In Hibernate, every operation goes through a Session object, a Session
mediates access to the underlying database and takes care of managing the connection to the
JDBC DataSource. Extending HibernateDaoSupport also means that we can access the
HibernateTemplate using getHibernateTemplate(). For an example of what can be done
with the HibernateTemplate...
The save() method takes an instance of Weather and calls the save() method on
a HibernateTemplate. The HibernateTemplate simplifies calls to common Hibernate
operations and converts any database specific exceptions to runtime exceptions. Here we call out to
save() which inserts a new record into the Weather table. Alternatives to save() are update()
which updates an existing row, or saveOrUpdate() which would either save or update depending
on the presence of a non-null id property in Weather.
The load() method, once again, is a one-liner that just calls a method on an instance
of HibernateTemplate. load() on HibernateTemplate takes a Class object and a
Serializable object. In this case, the Serializable corresponds to the id value of the
Weather object to load.
This last method recentForLocation() calls out to a NamedQuery defined in the Weather
model object. If you can think back that far, the Weather model object defined a named
query "Weather.byLocation" with a query of "from Weather w where w.location
= :location". We're loading this NamedQuery using a reference to a Hibernate Session
object inside a HibernateCallback which is executed by the execute() method on
HibernateTemplate. You can see in this method that we're populating the named parameter
location with the parameter passed in to the recentForLocation() method.

Now is a good time for some clarification. HibernateDaoSupport and HibernateTemplate are
classes from the Spring Framework. They were created by the Spring Framework to make writing
Hibernate DAO objects painless. To support this DAO, we’ll need to do some configuration in
the simple-persist Spring ApplicationContext definition. The XML document shown in
Example 7.10, “Spring Application Context for simple-persist” is stored in src/main/resources in
a file named applicationContext-persist.xml.

Example 7.10. Spring Application Context for simple-persist

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

97

 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"
 default-lazy-init="true">

 <bean id="sessionFactory"
class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean">
 <property name="annotatedClasses">
 <list>
 <value>org.sonatype.mavenbook.weather.model.Atmosphere</value>
 <value>org.sonatype.mavenbook.weather.model.Condition</value>
 <value>org.sonatype.mavenbook.weather.model.Location</value>
 <value>org.sonatype.mavenbook.weather.model.Weather</value>
 <value>org.sonatype.mavenbook.weather.model.Wind</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.show_sql">false</prop>
 <prop key="hibernate.format_sql">true</prop>
 <prop key="hibernate.transaction.factory_class">
 org.hibernate.transaction.JDBCTransactionFactory
 </prop>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </prop>
 <prop key="hibernate.connection.pool_size">0</prop>
 <prop key="hibernate.connection.driver_class">
 org.hsqldb.jdbcDriver
 </prop>
 <prop key="hibernate.connection.url">
 jdbc:hsqldb:data/weather;shutdown=true
 </prop>
 <prop key="hibernate.connection.username">sa</prop>
 <prop key="hibernate.connection.password"></prop>
 <prop key="hibernate.connection.autocommit">true</prop>
 <prop key="hibernate.jdbc.batch_size">0</prop>
 </props>
 </property>
 </bean>

 <bean id="locationDAO"
 class="org.sonatype.mavenbook.weather.persist.LocationDAO">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>

 <bean id="weatherDAO"
 class="org.sonatype.mavenbook.weather.persist.WeatherDAO">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>
 </beans>

In this application context, we're accomplishing a few things. The sessionFactory bean is
the bean from which the DAOs retrieve Hibernate Session objects. This bean is an instance

98

of AnnotationSessionFactoryBean and is supplied with a list of annotatedClasses. Note
that the list of annotated classes is the list of classes defined in our simple-model module.
Next, the sessionFactory is configured with a set of Hibernate configuration properties
(hibernateProperties). In this example, our Hibernate properties define a number of settings:

hibernate.dialect

This setting controls how SQL is to be generated for our database. Since we are using the
HSQLDB database, our database dialect is set to org.hibernate.dialect.HSQLDialect.
Hibernate has dialects for all major databases such as Oracle, MySQL, Postgres, and SQL Server.

hibernate.connection.*

In this example, we’re configuring the JDBC connection properties from the Spring
configuration. Our applications are configured to run against a HSQLDB in the ./data/
weather directory. In a real enterprise application, it is more likely you would use something
like JNDI to externalize database configuration from your application’s code.

Lastly, in this bean definition file, both of the simple-persist DAO objects are created and
given a reference to the sessionFactory bean just defined. Just like the Spring application context
in simple-weather, this applicationContext-persist.xml file defines the architecture of a
submodule in a larger enterprise design. If you were working with a larger collection of persistence
classes, you might find it useful to capture them in an application context which is separate from your
application.

There’s one last piece of the puzzle in simple-persist. Later in this chapter, we’re going to see how
we can use the Maven Hibernate3 plugin to generate our database schema from the annotated model
objects. For this to work properly, the Maven Hibernate3 plugin needs to read the JDBC connection
configuration parameters, the list of annotated classes, and other Hibernate configuration from a file
named hibernate.cfg.xml in src/main/resources. The purpose of this file (which duplicates
some of the configuration in applicationContext-persist.xml) is to allow us to leverage the
Maven Hibernate3 plugin to generate Data Definition Language (DDL) from nothing more than our
annotations. See Example 7.11, “simple-persist hibernate.cfg.xml”.

Example 7.11. simple-persist hibernate.cfg.xml

<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>

 <!-- SQL dialect -->
 <property name="dialect">org.hibernate.dialect.HSQLDialect</property>

 <!-- Database connection settings -->
 <property name="connection.driver_class">org.hsqldb.jdbcDriver</property>
 <property name="connection.url">jdbc:hsqldb:data/weather</property>
 <property name="connection.username">sa</property>

99

 <property name="connection.password"></property>
 <property name="connection.shutdown">true</property>

 <!-- JDBC connection pool (use the built-in one) -->
 <property name="connection.pool_size">1</property>

 <!-- Enable Hibernate's automatic session context management -->
 <property name="current_session_context_class">thread</property>

 <!-- Disable the second-level cache -->
 <property name="cache.provider_class">
 org.hibernate.cache.NoCacheProvider
 </property>

 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>

 <!-- disable batching so HSQLDB will propagate errors correctly. -->
 <property name="jdbc.batch_size">0</property>

 <!-- List all the mapping documents we're using -->
 <mapping class="org.sonatype.mavenbook.weather.model.Atmosphere"/>
 <mapping class="org.sonatype.mavenbook.weather.model.Condition"/>
 <mapping class="org.sonatype.mavenbook.weather.model.Location"/>
 <mapping class="org.sonatype.mavenbook.weather.model.Weather"/>
 <mapping class="org.sonatype.mavenbook.weather.model.Wind"/>

 </session-factory>
</hibernate-configuration>

The contents of Example 7.10, “Spring Application Context for simple-persist” and Example 7.1,
“simple-parent Project POM” are redundant. While the Spring Application Context XML is going
to be used by the web application and the command-line application, the hibernate.cfg.xml
exists only to support the Maven Hibernate3 plugin. Later in this chapter, we'll see how to use this
hibernate.cfg.xml and the Maven Hibernate3 plugin to generate a database schema based on the
annotated object model defined in simple-model. This hibernate.cfg.xml file is the file that will
configure the JDBC connection properties and enumerate the list of annotated model classes for the
Maven Hibernate3 plugin.

7.6. The Simple Web Application Module
The web application is defined in a simple-webapp project. This simple web application project is
going to define two Spring MVC Controllers: WeatherController and HistoryController. Both
of these controllers are going to reference components defined in simple-weather and simple-
persist. The Spring container is configured in this application’s web.xml, which references the
applicationContext-weather.xml file in simple-weather and the applicationContext-
persist.xml file in simple-persist. The component architecture of this simple web application is
shown in Figure 7.3, “Spring MVC Controllers Referencing Components in simple-weather and simple-
persist.”.

100

simple-webapp
weather-servlet.xml

weatherController

historyController

simple-weather
applicationContext-weather.xml

weatherService

simple-persist
applicationContext-persist.xml

weatherDAO

locationDAO

= Dependency

Figure 7.3. Spring MVC Controllers Referencing Components in simple-weather and simple-persist.

The POM for simple-webapp is shown in Example 7.12, “POM for simple-webapp”.

Example 7.12. POM for simple-webapp

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <name>Simple Web Application</name>
 <dependencies>

 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-weather</artifactId>
 <version>1.0</version>
 </dependency>

101

 <dependency>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-persist</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>

 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>

 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
 </dependency>
 </dependencies>
 </plugin>
 <plugin>

 <groupId>org.codehaus.mojo</groupId>
 <artifactId>hibernate3-maven-plugin</artifactId>
 <version>2.0</version>
 <configuration>
 <components>
 <component>
 <name>hbm2ddl</name>

 <implementation>annotationconfiguration</implementation>
 </component>
 </components>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

102

As this book progresses and the examples become more and more substantial, you’ll notice that the
pom.xml begins to take on some weight. In this POM, we’re configuring four dependencies and two
plugins. Let’s go through this POM in detail and dwell on some of the important configuration points:

This simple-webapp project defines four dependencies: the Servlet 2.4 specification, the simple-
weather service library, the simple-persist persistence library, and the entire Spring Framework
2.0.7.
The Maven Jetty plugin couldn’t be easier to add to this project; we simply add a plugin element
that references the appropriate groupId and artifactId. The fact that this plugin is so trivial
to configure means that the plugin developers did a good job of providing adequate defaults that
don’t need to be overridden in most cases. If you did need to override the configuration of the Jetty
plugin, you would do so by providing a configuration element.
In our build configuration, we're going to be configuring the Maven Hibernate3 Plugin to hit an
embedded HSQLDB instance. For the Maven Hibernate 3 plugin to successfully connect to this
database using JDBC, the plugin will need reference the HSQLDB JDBC driver on the classpath.
To make a dependency available for a plugin, we add a dependency declaration right inside
plugin declaration. In this case, we're referencing hsqldb:hsqldb:1.8.0.7. The Hibernate plugin
also needs the JDBC driver to create the database, so we have also added this dependency to its
configuration.
The Maven Hibernate plugin is when this POM starts to get interesting. In the next section, we’re
going to run the hbm2ddl goal to generate a HSQLDB database. In this pom.xml, we’re including
a reference to version 2.0 of the hibernate3-maven-plugin hosted by the Codehaus Mojo
plugin.
The Maven Hibernate3 plugin has different ways to obtain Hibernate mapping information
that are appropriate for different usage scenarios of the Hibernate3 plugin. If you were using
Hibernate Mapping XML (.hbm.xml) files, and you wanted to generate model classes using
the hbm2java goal, you would set your implementation to configuration. If you were using the
Hibernate3 plugin to reverse engineer a database to produce .hbm.xml files and model classes
from an existing database, you would use an implementation of jdbcconfiguration. In this
case, we’re simply using an existing annotated object model to generate a database. In other
words, we have our Hibernate mapping, but we don’t yet have a database. In this usage scenario,
the appropriate implementation value is annotationconfiguration. The Maven Hibernate3
plugin is discussed in more detail in the later section Section 7.7, “Running the Web Application”.

Note
A common mistake is to use the extensions configuration to add dependencies required
by a plugin. This is strongly discouraged as the extensions can cause classpath pollution
across your project, among other nasty side-effects. Additionally, the extensions behavior
is being reworked in 2.1 and you'll eventually need to change it anyway. The only normal
use for extensions is to define new wagon implementations

Next, we turn our attention to the two Spring MVC controllers that will handle all of the requests. Both
of these controllers reference the beans defined in simple-weather and simple-persist.

103

Example 7.13. simple-webapp WeatherController

package org.sonatype.mavenbook.web;

import org.sonatype.mavenbook.weather.model.Weather;
import org.sonatype.mavenbook.weather.persist.WeatherDAO;
import org.sonatype.mavenbook.weather.WeatherService;
import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;

public class WeatherController implements Controller {

 private WeatherService weatherService;
 private WeatherDAO weatherDAO;

 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 String zip = request.getParameter("zip");
 Weather weather = weatherService.retrieveForecast(zip);
 weatherDAO.save(weather);
 return new ModelAndView("weather", "weather", weather);
 }

 public WeatherService getWeatherService() {
 return weatherService;
 }

 public void setWeatherService(WeatherService weatherService) {
 this.weatherService = weatherService;
 }

 public WeatherDAO getWeatherDAO() {
 return weatherDAO;
 }

 public void setWeatherDAO(WeatherDAO weatherDAO) {
 this.weatherDAO = weatherDAO;
 }
}

WeatherController implements the Spring MVC Controller interface that mandates the presence
of a handleRequest() method with the signature shown in the example. If you look at
the meat of this method, you’ll see that it invokes the retrieveForecast() method on the
weatherService instance variable. Unlike the previous chapter, which had a Servlet that instantiated
the WeatherService class, the WeatherController is a bean with a weatherService property.
The Spring IoC container is responsible for wiring the controller to the weatherService component.
Also notice that we’re not using the WeatherFormatter in this Spring controller implementation;
instead, we’re passing the Weather object returned by retrieveForecast() to the constructor of
ModelAndView. This ModelAndView class is going to be used to render a Velocity template, and

104

this template will have references to a ${weather} variable. The weather.vm template is stored in
src/main/webapp/WEB-INF/vm and is shown in Example 7.14, “weather.vm template rendered by
WeatherController”.

In the WeatherController, before we render the output of the forecast, we pass the Weather object
returned by the WeatherService to the save() method on WeatherDAO. Here we are saving this
Weather object—using Hibernate—to an HSQLDB database. Later, in HistoryController, we will
see how we can retrieve a history of weather forecasts that were saved by the WeatherController.

Example 7.14. weather.vm template rendered by WeatherController

Current Weather Conditions for:
 ${weather.location.city}, ${weather.location.region},
 ${weather.location.country}

 Temperature: ${weather.condition.temp}
 Condition: ${weather.condition.text}
 Humidity: ${weather.atmosphere.humidity}
 Wind Chill: ${weather.wind.chill}
 Date: ${weather.date}

The syntax for this Velocity template is straightforward: variables are referenced using ${} notation. The
expression between the curly braces references a property, or a property of a property on the weather
variable, which was passed to this template by the WeatherController.

The HistoryController is used to retrieve recent forecasts that have been requested by the
WeatherController. Whenever we retrieve a forecast from the WeatherController, that controller
saves the Weather object to the database via the WeatherDAO. WeatherDAO then uses Hibernate
to dissect the Weather object into a series of rows in a set of related database tables. The
HistoryController is shown in Example 7.15, “simple-web HistoryController”.

Example 7.15. simple-web HistoryController

package org.sonatype.mavenbook.web;

import java.util.*;
import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;
import org.sonatype.mavenbook.weather.model.*;
import org.sonatype.mavenbook.weather.persist.*;

public class HistoryController implements Controller {

 private LocationDAO locationDAO;
 private WeatherDAO weatherDAO;

 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) throws Exception {

105

 String zip = request.getParameter("zip");
 Location location = locationDAO.findByZip(zip);
 List<Weather> weathers = weatherDAO.recentForLocation(location);

 Map<String,Object> model = new HashMap<String,Object>();
 model.put("location", location);
 model.put("weathers", weathers);

 return new ModelAndView("history", model);
 }

 public WeatherDAO getWeatherDAO() {
 return weatherDAO;
 }

 public void setWeatherDAO(WeatherDAO weatherDAO) {
 this.weatherDAO = weatherDAO;
 }

 public LocationDAO getLocationDAO() {
 return locationDAO;
 }

 public void setLocationDAO(LocationDAO locationDAO) {
 this.locationDAO = locationDAO;
 }
}

The HistoryController is wired to two DAO objects defined in simple-persist. The DAOs
are bean properties of the HistoryController: WeatherDAO and LocationDAO. The goal of the
HistoryController is to retrieve a List of Weather objects which correspond to the zip parameter.
When the WeatherDAO saves the Weather object to the database, it doesn't just store the zip code,
it stores a Location object which is related to the Weather object in the simple-model. To
retrieve a List of Weather objects, the HistoryController first retrieves the Location object that
corresponds to the zip parameter. It does this by invoking the findByZip() method on LocationDAO.

Once the Location object has been retrieved, the HistoryController will then attempt to retrieve
recent Weather objects that match the given Location. Once the List<Weather> has been
retrieved, a HashMap is created to hold two variables for the history.vm Velocity template shown in
Example 7.16, “history.vm rendered by the HistoryController”.

Example 7.16. history.vm rendered by the HistoryController

Weather History for: ${location.city}, ${location.region}, ${location.country}

#foreach($weather in $weathers)

 Temperature: $weather.condition.temp
 Condition: $weather.condition.text

106

 Humidity: $weather.atmosphere.humidity
 Wind Chill: $weather.wind.chill
 Date: $weather.date

#end

The history.vm template in src/main/webapp/WEB-INF/vm references the location variable to
print out information about the location of the forecasts retrieved from the WeatherDAO. This template
then uses a Velocity control structure, #foreach, to loop through each element in the weathers
variable. Each element in weathers is assigned to a variable named weather and the template between
#foreach and #end is rendered for each forecast.

You've seen these Controller implementations, and you've seen that they reference other beans
defined in simple-weather and simple-persist, they respond to HTTP requests, and they yield
control to some mysterious templating system that knows how to render Velocity templates. All of
this magic is configured in a Spring application context in src/main/webapp/WEB-INF/weather-
servlet.xml. This XML configures the controllers and references other Spring-managed beans, it is
loaded by a ServletContextListener which is also configured to load the applicationContext-
weather.xml and applicationContext-persist.xml from the classpath. Let's take a closer look
at the weather-servlet.xml shown in Example 7.17, “Spring Controller configuration weather-
servlet.xml”.

Example 7.17. Spring Controller configuration weather-servlet.xml

<beans>

 <bean id="weatherController"
 class="org.sonatype.mavenbook.web.WeatherController">
 <property name="weatherService" ref="weatherService"/>
 <property name="weatherDAO" ref="weatherDAO"/>
 </bean>

 <bean id="historyController"
 class="org.sonatype.mavenbook.web.HistoryController">
 <property name="weatherDAO" ref="weatherDAO"/>
 <property name="locationDAO" ref="locationDAO"/>
 </bean>

 <!-- you can have more than one handler defined -->
 <bean id="urlMapping"
 class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
 <property name="urlMap">
 <map>

 <entry key="/weather.x">
 <ref bean="weatherController" />
 </entry>
 <entry key="/history.x">
 <ref bean="historyController" />
 </entry>
 </map>
 </property>
 </bean>

107

 <bean id="velocityConfig"
 class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
 <property name="resourceLoaderPath" value="/WEB-INF/vm/"/>
 </bean>

 <bean id="viewResolver"
 class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">
 <property name="cache" value="true"/>
 <property name="prefix" value=""/>
 <property name="suffix" value=".vm"/>
 <property name="exposeSpringMacroHelpers" value="true"/>
 </bean>
</beans>

The weather-servlet.xml defines the two controllers as Spring-managed beans.
weatherController has two properties which are references to weatherService and
weatherDAO. historyController references the beans weatherDAO and locationDAO.
When this ApplicationContext is created, it is created in an environment that has access to the
ApplicationContexts defined in both simple-persist and simple-weather. In ??? you
will see how Spring is configured to merge components from multiple Spring configuration files.
The urlMapping bean defines the URL patterns which invoke the WeatherController and
the HistoryController. In this example, we are using the SimpleUrlHandlerMapping and
mapping /weather.x to WeatherController and /history.x to HistoryController.
Since we are using the Velocity templating engine, we will need to pass in some configuration
options. In the velocityConfig bean, we are telling Velocity to look for all templates in the /
WEB-INF/vm directory.
Last, the viewResolver is configured with the class VelocityViewResolver. There are a
number of ViewResolver implementations in Spring from a standard ViewResolver to render
JSP or JSTL pages to a resolver which can render Freemarker templates. In this example, we're
configuring the Velocity templating engine and setting the default prefix and suffix which will be
automatically appended to the names of the template passed to ModelAndView.

Finally, the simple-webapp project was a web.xml which provides the basic configuration for the
web application. The web.xml file is shown in ???.

Example 7.18. web.xml for simple-webapp

<web-app id="simple-webapp" version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <display-name>Simple Web Application</display-name>

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>

108

 classpath:applicationContext-weather.xml
 classpath:applicationContext-persist.xml
 </param-value>
 </context-param>

 <context-param>
 <param-name>log4jConfigLocation</param-name>
 <param-value>/WEB-INF/log4j.properties</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.springframework.web.util.Log4jConfigListener
 </listener-class>
 </listener>

 <listener>

 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>weather</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>weather</servlet-name>
 <url-pattern>*.x</url-pattern>
 </servlet-mapping>
</web-app>

Here's a bit of magic which allows us to reuse the applicationContext-weather.xml and
applicationContext-persist.xml in this project. The contextConfigLocation is used
by the ContextLoaderListener to create an ApplicationContext. When the weather servlet
is created, the weather-servlet.xml from Example 7.17, “Spring Controller configuration
weather-servlet.xml” is going to be evaluated with the ApplicationContext created from this
contextConfigLocation. In this way, you can define a set of beans in another project and you
can reference these beans via the classpath. Since the simple-persist and simple-weather
JARs are going to be in WEB-INF/lib, all we do is use the classpath: prefix to reference these
files. (Another option would have been to copy these files to /WEB-INF and reference them with
something like /WEB-INF/applicationContext-persist.xml).
The log4jConfigLocation is used to tell the Log4JConfigListener where to look for Log4J
logging configuration. In this example, we tell Log4J to look in /WEB-INF/log4j.properties.
This makes sure that the Log4J system is configured when the web application starts. It is important
to put this Log4JConfigListener before the ContextLoaderListener; otherwise, you may

109

miss important logging messages which point to a problem preventing application startup. If you
have a particularly large set of beans managed by Spring, and one of them happens to blow up on
application startup, your application will fail. If you have logging initialized before Spring starts,
you might have a chance to catch a warning or an error. If you don't have logging initialized before
Spring starts up, you'll have no idea why your application refuses to start.
The ContextLoaderListener is essentially the Spring container. When the application
starts, this listener will build an ApplicationContext from the contextConfigLocation
parameter.
We define a Spring MVC DispatcherServlet with a name of weather. This will cause Spring
to look for a Spring configuration file in /WEB-INF/weather-servlet.xml. You can have
as many DispatcherServlets as you need, a DispatcherServlet can contain one or more
Spring MVC Controller implementations.
All requests ending in .x will be routed to the weather servlet. Note that the .x extension has no
particular meaning, it is an arbitrary choice and you can use whatever URL pattern you like.

7.7. Running the Web Application
To run the web application, you’ll first need to build the entire multi-module project and then build the
database using the Hibernate3 plugin. First, from the top-level simple-parent project directory, run
mvn clean install:

$ mvn clean install

Running mvn clean install at the top-level of your multi-module project will install all of modules
into your local Maven repository. You need to do this before building the database from the simple-
webapp project. To build the database from the simple-webapp project, run the following from the
simple-webapp project's directory:

$ mvn hibernate3:hbm2ddl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'hibernate3'.
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] --
[INFO] Building Multi-Spring Chapter Simple Web Application
[INFO] task-segment: [hibernate3:hbm2ddl]
[INFO] --
[INFO] Preparing hibernate3:hbm2ddl
...
10:24:56,151 INFO org.hibernate.tool.hbm2ddl.SchemaExport - export complete
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

Once you've done this, there should be a ${basedir}/data directory which will contain the HSQLDB
database. You can then start the web application with:

$ mvn jetty:run

110

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'jetty'.
[INFO] --
[INFO] Building Multi-Spring Chapter Simple Web Application
[INFO] task-segment: [jetty:run]
[INFO] --
[INFO] Preparing jetty:run
...
[INFO] [jetty:run]
[INFO] Configuring Jetty for project:
Multi-Spring Chapter Simple Web Application
...
[INFO] Context path = /simple-webapp
[INFO] Tmp directory = determined at runtime
[INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] Starting jetty 6.1.7 ...
2008-03-25 10:28:03.639::INFO: jetty-6.1.7
...
2147 INFO DispatcherServlet - FrameworkServlet 'weather': \
 initialization completed in 1654 ms
2008-03-25 10:28:06.341::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Once Jetty is started, you can load http://localhost:8080/simple-webapp/weather.x?zip=60202 and you
should see the weather for Evanston, IL in your web browser. Change the ZIP code and you should be
able to get your own weather report.

Current Weather Conditions for: Evanston, IL, US

 * Temperature: 42
 * Condition: Partly Cloudy
 * Humidity: 55
 * Wind Chill: 34
 * Date: Tue Mar 25 10:29:45 CDT 2008

7.8. The Simple Command Module

The simple-command project is a command-line version of the simple-webapp. It is a utility that
relies on the same dependencies: simple-persist and simple-weather. Instead of interacting with
this application via a web browser, you would run the simple-command utility from the command-line.

http://localhost:8080/simple-webapp/weather.x?zip=60202

111

simple-command
Main.java

Main

simple-weather
applicationContext-weather.xml

weatherService

simple-persist
applicationContext-persist.xml

weatherDAO

locationDAO

= Dependency

Figure 7.4. Command line application referencing simple-weather and simple-persist

Example 7.19. POM for simple-command

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-command</artifactId>
 <packaging>jar</packaging>
 <name>Simple Command Line Tool</name>

 <build>
 <finalName>${project.artifactId}</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

112

 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>hibernate3-maven-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <components>
 <component>
 <name>hbm2ddl</name>
 <implementation>annotationconfiguration</implementation>
 </component>
 </components>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-weather</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.multispring</groupId>
 <artifactId>simple-persist</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 <dependency>

113

 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
 </dependency>
 </dependencies>
</project>

This POM creates a JAR file which will contain the org.sonatype.mavenbook.weather.Main
class shown in Example 7.20, “The Main class for simple-command”. In this POM we configure the
Maven Assembly plugin to use a built-in assembly descriptor named jar-with-dependencies which
creates a single JAR file containing all the bytecode a project needs to execute including the bytecode
from the project you are building and all the bytecode from libraries your project depends upons.

Example 7.20. The Main class for simple-command

package org.sonatype.mavenbook.weather;

import java.util.List;

import org.apache.log4j.PropertyConfigurator;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;
import org.sonatype.mavenbook.weather.persist.LocationDAO;
import org.sonatype.mavenbook.weather.persist.WeatherDAO;

public class Main {

 private WeatherService weatherService;
 private WeatherDAO weatherDAO;
 private LocationDAO locationDAO;

 public static void main(String[] args) throws Exception {
 // Configure Log4J
 PropertyConfigurator.configure(Main.class.getClassLoader().getResource(
 "log4j.properties"));

 // Read the Zip Code from the Command-line (if none supplied, use 60202)
 String zipcode = "60202";
 try {
 zipcode = args[0];
 } catch (Exception e) {
 }

 // Read the Operation from the Command-line (if none supplied use weather)
 String operation = "weather";
 try {
 operation = args[1];
 } catch (Exception e) {
 }

114

 // Start the program
 Main main = new Main(zipcode);

 ApplicationContext context =
 new ClassPathXmlApplicationContext(
 new String[] { "classpath:applicationContext-weather.xml",
 "classpath:applicationContext-persist.xml" });
 main.weatherService = (WeatherService) context.getBean("weatherService");
 main.locationDAO = (LocationDAO) context.getBean("locationDAO");
 main.weatherDAO = (WeatherDAO) context.getBean("weatherDAO");
 if(operation.equals("weather")) {
 main.getWeather();
 } else {
 main.getHistory();
 }
 }

 private String zip;

 public Main(String zip) {
 this.zip = zip;
 }

 public void getWeather() throws Exception {
 Weather weather = weatherService.retrieveForecast(zip);
 weatherDAO.save(weather);
 System.out.print(new WeatherFormatter().formatWeather(weather));
 }

 public void getHistory() throws Exception {
 Location location = locationDAO.findByZip(zip);
 List<Weather> weathers = weatherDAO.recentForLocation(location);
 System.out.print(new WeatherFormatter().formatHistory(location, weathers));
 }
}

The Main class has a reference to WeatherDAO, LocationDAO, and WeatherService. The static
main() method in this class:

• Reads the Zip Code from the first command line argument

• Reads the Operation from the second command line argument. If the operation is "weather", the
latest weather will be retrieved from the web service. If the operation is "history", the program will
fetch historical weather records from the local database.

• Loads a Spring ApplicationContext using two XML files loaded from simple-persist and
simple-weather

• Creates an instance of Main

• Populates the weatherService, weatherDAO, and locationDAO with beans from the Spring
ApplicationContext

115

• Runs the appropriate method getWeather() or getHistory() depending on the specified
operation.

In the web application we use Spring VelocityViewResolver to render a Velocity template. In the
stand-alone implementation, we need to write a simple class which renders our weather data with a
Velocity template. Example 7.21, “WeatherFormatter renders weather data using a Velocity template”
is a listing of the WeatherFormatter, a class with two methods that render the weather report and
the weather history.

Example 7.21. WeatherFormatter renders weather data using a Velocity template

package org.sonatype.mavenbook.weather;

import java.io.InputStreamReader;
import java.io.Reader;
import java.io.StringWriter;
import java.util.List;

import org.apache.log4j.Logger;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherFormatter {

 private static Logger log = Logger.getLogger(WeatherFormatter.class);

 public String formatWeather(Weather weather) throws Exception {
 log.info("Formatting Weather Data");
 Reader reader =
 new InputStreamReader(getClass().getClassLoader().
 getResourceAsStream("weather.vm"));
 VelocityContext context = new VelocityContext();
 context.put("weather", weather);
 StringWriter writer = new StringWriter();
 Velocity.evaluate(context, writer, "", reader);
 return writer.toString();
 }

 public String formatHistory(Location location, List<Weather> weathers)
 throws Exception {
 log.info("Formatting History Data");
 Reader reader =
 new InputStreamReader(getClass().getClassLoader().
 getResourceAsStream("history.vm"));
 VelocityContext context = new VelocityContext();
 context.put("location", location);
 context.put("weathers", weathers);
 StringWriter writer = new StringWriter();
 Velocity.evaluate(context, writer, "", reader);
 return writer.toString();

116

 }
}

The weather.vm template simply prints the zip code's city, country, and region as well as the current
temperature. The history.vm template prints the location and then iterates through the weather
forecast records stored in the local database. Both of these templates are in ${basedir}/src/main/
resources.

Example 7.22. The weather.vm Velocity template

**
Current Weather Conditions for:
 ${weather.location.city},
 ${weather.location.region},
 ${weather.location.country}
**

 * Temperature: ${weather.condition.temp}
 * Condition: ${weather.condition.text}
 * Humidity: ${weather.atmosphere.humidity}
 * Wind Chill: ${weather.wind.chill}
 * Date: ${weather.date}

Example 7.23. The history.vm Velocity template

Weather History for:
${location.city},
${location.region},
${location.country}

#foreach($weather in $weathers)
**
 * Temperature: $weather.condition.temp
 * Condition: $weather.condition.text
 * Humidity: $weather.atmosphere.humidity
 * Wind Chill: $weather.wind.chill
 * Date: $weather.date
#end

7.9. Running the Simple Command
The simple-command project is configured to create a single JAR containing the bytecode of the
project and all of the bytecode from the dependencies. To create this assembly, run the assembly goal
of the Maven Assembly plugin from the simple-command project directory:

$ mvn assembly:assembly
[INFO] --
[INFO] Building Multi-spring Chapter Simple Command Line Tool
[INFO] task-segment: [assembly:assembly] (aggregator-style)
[INFO] --
[INFO] [resources:resources]

117

[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [surefire:test]
...
[INFO] [jar:jar]
[INFO] Building jar: .../simple-parent/simple-command/target/simple-command.jar
[INFO] [assembly:assembly]
[INFO] Processing DependencySet (output=)
[INFO] Building jar: .../simple-parent/simple-command/target
 /simple-command-jar-with-dependencies.jar

The build progresses through the lifecycle compiling bytecode, running tests, and finally building a JAR
for the project. Then the assembly:assembly goal creates a JAR with dependencies by unpacking all
of the dependencies to temporary directories and then collecting all of the bytecode into a single JAR
in target/ named simple-command-jar-with-dependencies.jar. This "uber" JAR weighs in
at 15 MB.

Before you run the command-line tool, you will need to invoke the hbm2ddl goal of the Hibernate3
plugin to create the HSQLDB database. Do this by running the following command from the simple-
command directory:

$ mvn hibernate3:hbm2ddl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'hibernate3'.
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] --
[INFO] Building Multi-spring Chapter Simple Command Line Tool
[INFO] task-segment: [hibernate3:hbm2ddl]
[INFO] --
[INFO] Preparing hibernate3:hbm2ddl
...
10:24:56,151 INFO org.hibernate.tool.hbm2ddl.SchemaExport - export complete
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

Once you run this, you should see a data/ directory under simple-command. This data/ directory
holds the HSQLDB database. To run the command-line weather forecaster, run the following from the
simple-command/ project directory:

$ java -cp target/simple-command-jar-with-dependencies.jar \
 org.sonatype.mavenbook.weather.Main 60202
2321 INFO YahooRetriever - Retrieving Weather Data
2489 INFO YahooParser - Creating XML Reader
2581 INFO YahooParser - Parsing XML Response
2875 INFO WeatherFormatter - Formatting Weather Data

118

**
Current Weather Conditions for:
 Evanston,
 IL,
 US
**

 * Temperature: 75
 * Condition: Partly Cloudy
 * Humidity: 64
 * Wind Chill: 75
 * Date: Wed Aug 06 09:35:30 CDT 2008

To run a history query, execute the following command:

$ java -cp target/simple-command-jar-with-dependencies.jar \
 org.sonatype.mavenbook.weather.Main 60202 history
2470 INFO WeatherFormatter - Formatting History Data
Weather History for:
Evanston, IL, US

**
 * Temperature: 39
 * Condition: Heavy Rain
 * Humidity: 93
 * Wind Chill: 36
 * Date: 2007-12-02 13:45:27.187
**
 * Temperature: 75
 * Condition: Partly Cloudy
 * Humidity: 64
 * Wind Chill: 75
 * Date: 2008-08-06 09:24:11.725
**
 * Temperature: 75
 * Condition: Partly Cloudy
 * Humidity: 64
 * Wind Chill: 75
 * Date: 2008-08-06 09:27:28.475

7.10. Conclusion

We've spent a great deal of time on topics not directly related Maven to get this far. We've done this to
present a complete and meaningful example project which you can use to implement real-world systems.
We didn't take any short-cuts to produce slick, canned results quickly, and we're not going to dazzle you
with some Ruby on Rails-esque wizardry and lead you to believe that you can create a finished Java
Enterprise application in "10 easy minutes!" There's too much of this in the market, there are too many
people trying to sell you the easiest framework that requires zero investment of time or attention. What
we're trying to do in this chapter is present the entire picture, the entire ecosystem of a multi-module
build. What we've done is present Maven in the context of a application which resembles something

119

you could see in the wild—not the fast-food, 10 minute screen-cast that slings mud at Apache Ant and
tries to convince you to adopt Apache Maven.

If you walk away from this chapter wondering what it has to do with Maven, we've succeeded. We
present a complex set of projects, using popular frameworks, and we tie them together using declarative
builds. The fact that more than 60% of this chapter was spent explaining Spring and Hibernate should
tell you that Maven, for the most part, stepped out of the way. It worked. It allowed us to focus on the
application itself, not on the build process. Instead of spending time discussing Maven, and the work
you would have to do to "build a build" that integrated with Spring and Hibernate, we talked almost
exclusively about the technologies used in this contrived project. If you start to use Maven, and you
take the time to learn it, you really do start to benefit from the fact that you don't have to spend time
coding up some procedural build script. You don't have to spend your time worrying about mundane
aspects of your build.

You can use the skeleton project introduced in this chapter as the foundation for your own, and chances
are that when you do, you'll find yourself creating more and more modules as you need them. For
example, the project on which this chapter was based has two distinct model projects, two persistence
projects which persist to dramatically different databases, several web applications, and a Java mobile
application. In total, the real world system I based this on contains at least 15 interrelated modules. The
point is that, you've seen the most complex multi-module example we're going to include in this book,
but you should also know that this example just scratches the surface of what is possible with Maven.

7.10.1. Programming to Interface Projects

This chapter explored a multi-module project which was more complex than the simple example
presented in Chapter 6, A Multi-module Project, yet it was still a simplification of a real-world project.
In a larger project, you might find yourself building a system resembling Figure 7.5, “Programming to
Interface Projects”.i

120

com.sonatype
big-parent

com.sonatype
weather-model

com.sonatype
big-webapp

com.sonatype
parse-api

Super POM
= Dependency
= Inherits from

com.sonatype
persist-api

com.sonatype
big-command

com.sonatype
parse-yahoo

com.sonatype
parse-noaa

com.sonatype
persist-xmldb

com.sonatype
persist-jdbc

Figure 7.5. Programming to Interface Projects

When we use the term interface project we are referring to a Maven project which contains interfaces
and constants only. In Figure 7.5, “Programming to Interface Projects” the interface projects would be
persist-api and parse-api. If big-command and big-webapp are written to the interfaces defined
in persist-api, then it is very easy to just swap in another implementation of the persistence library.
This particular diagram shows two implementations of the persist-api project, one which stores data
in an XML database, and the other which stores data in a relational database. If you use some of the
concepts in this chapter, you can see how you could just pass in a flag to the program that swaps in a
different Spring application context XML file to swap out data sources of persistence implementations.
Just like the OO design of the application itself, it is often wise to separate the interfaces of an API from
the implementation of the API into separate Maven projects.

Chapter 8. Optimizing and Refactoring
POMs
8.1. Introduction

In Chapter 7, Multi-module Enterprise Project, we showed how many pieces of Maven come together
to produce a fully functional multimodule build. Although the example from that chapter suggests a real
application—one that interacts with a database, a web service, and that itself presents two interfaces: one
in a web application, and one on the command line—that example project is still contrived. To present
the complexity of a real project would require a book far larger than the one you are now reading. Real-
life applications evolve over years and are often maintained by large, diverse groups of developers, each
with a different focus. In a real-world project, you are often evaluating decisions and designs made and
created by others. In this chapter, we take a step back from the examples you’ve seen in the previous
chapters, and we ask ourselves if there are any optimizations that might make more sense given what
we now know about Maven. Maven is a very capable tool that can be as simple or as complex as you
need it to be. Because of this, there are often a million ways to accomplish the same task, and there is
often no one “right” way to configure your Maven project.

Don't misinterpret that last sentence as a license to go off and ask Maven to do something it wasn't
designed for. While Maven allows for a diversity of approach, there is certainly "A Maven Way", and
you'll be more productive using Maven as it was designed to be used. All this chapter is trying to do is
communicate some of the optimizations you can perform on an existing Maven project. Why didn't we
just introduce an optimized POM in the first place? Designing POMs for pedagogy is a very different
requirement from designing POMs for efficiency. While it is certainly much easier to define a certain
setting in your ~/.m2/settings.xml than to declare a profile in a pom.xml, writing a book, and
reading a book is mostly about pacing and making sure we're not introducing concepts before you
are ready. In the previous chapters, we've made an effort not to overwhelm the reader with too much
information, and, in doing so, we've skipped some core concepts like the dependencyManagement
element introduced in this chapter.

There are many instances in the previous chapters when the authors of this book took a shortcut or
glossed over an important detail to shuffle you along to the main point of a specific chapter. You learned
how to create a Maven project, and you compiled and installed it without having to wade through
hundreds of pages introducing every last switch and dial available to you. We’ve done this because we
believe it is important to deliver the new Maven user to a result faster rather than meandering our way
through a very long, seemingly interminable story. Once you’ve started to use Maven, you should know
how to analyze your own projects and POMs. In this chapter, we take a step back and look at what we
are left with after the example from Chapter 7, Multi-module Enterprise Project.

122

8.2. POM Cleanup

Optimizing a multimodule project’s POM is best done in several passes, as there are many areas to focus
on. In general, we are looking for repetition within a POM and across the sibling POMs. When you are
starting out, or when a project is still evolving rapidly, it is acceptable to duplicate some dependencies
and plugin configurations here and there, but as the project matures and as the number of modules
increases, you will want to take some time to refactor common dependencies and configuration points.
Making your POMs more efficient will go a long way to helping you manage complexity as your project
grows. Whenever there is duplication of some piece of information, there is usually a better way.

8.3. Optimizing Dependencies

If you look through the various POMs created in Chapter 7, Multi-module Enterprise Project, note
several patterns of replication. The first pattern we can see is that some dependencies such as spring
and hibernate-annotations are declared in several modules. The hibernate dependency also
has the exclusion on javax.transaction replicated in each definition. The second pattern of duplication
to note is that sometimes several dependencies are related and share the same version. This is often
the case when a project’s release consists of several closely coupled components. For example,
look at the dependencies on hibernate-annotations and hibernate-commons-annotations.
Both are listed as version 3.3.0.ga, and we can expect the versions of both these dependencies
to change together going forward. Both the hibernate-annotations and hibernate-commons-
annotations are components of the same project released by JBoss, and so when there is a new
project release, both of these dependencies will change. The third and last pattern of duplication is
the duplication of sibling module dependencies and sibling module versions. Maven provides simple
mechanisms that let you factor all of this duplication into a parent POM.

Just as in your project’s source code, any time you have duplication in your POMs, you open the
door a bit for trouble down the road. Duplicated dependency declarations make it difficult to ensure
consistent versions across a large project. When you only have two or three modules, this might not
be a primary issue, but when your organization is using a large, multimodule Maven build to manage
hundreds of components across multiple departments, one single mismatch between dependencies
can cause chaos and confusion. A simple version mismatch in a project’s dependency on a bytecode
manipulation package called ASM three levels deep in the project hierarchy could throw a wrench
into a web application maintained by a completely different group of developers who depend on that
particular module. Unit tests could pass because they are being run with one version of a dependency,
but they could fail disastrously in production where the bundle (WAR, in this case) was packaged up
with a different version. If you have tens of projects using something like Hibernate Annotations, each
repeating and duplicating the dependencies and exclusions, the mean time between someone screwing
up a build is going to be very short. As your Maven projects become more complex, your dependency
lists are going to grow, and you are going to want to consolidate versions and dependency declarations
in parent POMs.

123

The duplication of the sibling module versions can introduce a particularly nasty problem that is not
directly caused by Maven and is learned only after you’ve been bitten by this bug a few times. If you
use the Maven Release plugin to perform your releases, all these sibling dependency versions will be
updated automatically for you, so maintaining them is not the concern. If simple-web version 1.3-
SNAPSHOT depends on simple-persist version 1.3-SNAPSHOT, and if you are performing a release
of the 1.3 version of both projects, the Maven Release plugin is smart enough to change the versions
throughout your multimodule project’s POMs automatically. Running the release with the Release
plugin will automatically increment all of the versions in your build to 1.4-SNAPSHOT, and the release
plugin will commit the code change to the repository. Releasing a huge multimodule project couldn’t
be easier, until...

Problems occur when developers merge changes to the POM and interfere with a release that is in
progress. Often a developer merges and occasionally mishandles the conflict on the sibling dependency,
inadvertently reverting that version to a previous release. Since the consecutive versions of the
dependency are often compatible, it does not show up when the developer builds, and won’t show
up in any continuous integration build system as a failed build. Imagine a very complex build where
the trunk is full of components at 1.4-SNAPSHOT, and now imagine that Developer A has updated
Component A deep within the project’s hierarchy to depend on version 1.3-SNAPSHOT of Component
B. Even though most developers have 1.4-SNAPSHOT, the build succeeds if version 1.3-SNAPSHOT
and 1.4-SNAPSHOT of Component B are compatible. Maven continues to build the project using the
1.3-SNAPSHOT version of Component B from the developer’s local repositories. Everything seems to
be going quite smoothly—the project builds, the continuous integration build works fine, and so on.
Someone might have a mystifying bug related to Component B, but she chalks it up to malevolent
gremlins and moves on. Meanwhile, a pump in the reactor room is steadily building up pressure, until
something blows....

Someone, let's call them Mr. Inadvertent, had a merge conflict in component A, and mistakenly pegged
component A's dependency on component B to 1.3-SNAPSHOT while the rest of the project marches
on. A bunch of developers have been trying to fix a bug in component B all this time and they've been
mystified as to why they can't seem to fix the bug in production. Eventually someone looks at component
A and realizes that the dependency is pointing to the wrong version. Hopefully, the bug wasn't large
enough to cost money or lives, but Mr. Inadvertent feels stupid and people tend to trust him a little less
than they did before the whole sibling dependency screw-up. (Hopefully, Mr. Inadvertent realizes that
this was user error and not Maven's fault, but more than likely he starts an awful blog and complains
about Maven endlessly to make himself feel better.)

Fortunately, dependency duplication and sibling dependency mismatch are easily preventable if you
make some small changes. The first thing we’re going to do is find all the dependencies used in more
than one project and move them up to the parent POM’s dependencyManagement section. We’ll leave
out the sibling dependencies for now. The simple-parent pom now contains the following:

<project>
 ...
 <dependencyManagement>
 <dependencies>

124

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>3.2.5.ga</version>
 <exclusions>
 <exclusion>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

Once these are moved up, we need to remove the versions for these dependencies from each of the
POMs; otherwise, they will override the dependencyManagement defined in the parent project. Let’s
look at only simple-model for brevity’s sake:

<project>
 ...
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 </dependency>
 </dependencies>
 ...

125

</project>

The next thing we should do is fix the replication of the hibernate-annotations and hibernate-
commons-annotations version since these should match. We’ll do this by creating a property called
hibernate.annotations.version. The resulting simple-parent section looks like this:

<project>
 ...
 <properties>
 <hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>
 </properties>

 <dependencyManagement>
 ...
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>${hibernate.annotations.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>${hibernate.annotations.version}</version>
 </dependency>
 ...
 </dependencyManagement>
 ...
</project

The last issue we have to resolve is with the sibling dependencies. One technique we could use is
to move these up to the dependencyManagement section, just like all the others, and define the
versions of sibling projects in the top-level parent project. This is certainly a valid approach, but we
can also solve the version problem just by using two built-in properties—${project.groupId} and
${project.version}. Since they are sibling dependencies, there is not much value to be gained by
enumerating them in the parent, so we’ll rely on the built-in ${project.version} property. Because
they all share the same group, we can further future-proof these declarations by referring to the current
POM’s group using the built-in ${project.groupId} property. The simple-command dependency
section now looks like this:

<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-weather</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>

126

 <artifactId>simple-persist</artifactId>
 <version>${project.version}</version>
 </dependency>
 ...
 </dependencies>
 ...
</project>

Here’s a summary of the two optimizations we completed that reduce duplication of dependencies:

Pull-up common dependencies to dependencyManagement
If more than one project depends on a specific dependency, you can list the dependency in
dependencyManagement. The parent POM can contain a version and a set of exclusions;
all the child POM needs to do to reference this dependency is use the groupId and
artifactId. Child projects can omit the version and exclusions if the dependency is listed in
dependencyManagement.

Use built-in project version and groupId for sibling projects
Use ${project.version} and ${project.groupId} when referring to a sibling project.
Sibling projects almost always share the same groupId, and they almost always share the same
release version. Using ${project.version} will help you avoid the sibling version mismatch
problem discussed previously.

8.4. Optimizing Plugins
If we take a look at the various plugin configurations, we can see the HSQLDB dependencies duplicated
in several places. Unfortunately, dependencyManagement doesn’t apply to plugin dependencies, but
we can still use a property to consolidate the versions. Most complex Maven multimodule projects
tend to define all versions in the top-level POM. This top-level POM then becomes a focal point for
changes that affect the entire project. Think of version numbers as string literals in a Java class; if you
are constantly repeating a literal, you’ll likely want to make it a variable so that when it needs to be
changed, you have to change it in only one place. Rolling up the version of HSQLDB into a property
in the top-level POM yields the following properties element:

<project>
 ...
 <properties>
 <hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>
 <hsqldb.version>1.8.0.7</hsqldb.version>
 </properties>
 ...
</project>

The next thing we notice is that the hibernate3-maven-plugin configuration is duplicated in
the simple-webapp and simple-command modules. We can manage the plugin configuration
in the top-level POM just as we managed the dependencies in the top-level POM with the

127

dependencyManagement section. To do this, we use the pluginManagement element in the top-
level POM’s build element:

<project>
 ...
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>hibernate3-maven-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <components>
 <component>
 <name>hbm2ddl</name>
 <implementation>annotationconfiguration</implementation>
 </component>
 </components>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>${hsqldb.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
 ...
</project>

8.5. Optimizing with the Maven Dependency Plugin

On larger projects, additional dependencies often tend to creep into a POM as the number of
dependencies grow. As dependencies change, you are often left with dependencies that are not being
used, and just as often, you may forget to declare explicit dependencies for libraries you require. Because
Maven 2.x includes transitive dependencies in the compile scope, your project may compile properly but
fail to run in production. Consider a case where a project uses classes from a widely used project such
as Jakarta Commons BeanUtils. Instead of declaring an explicit dependency on BeanUtils, your project

128

simply relies on a project like Hibernate that references BeanUtils as a transitive dependency. Your
project may compile successfully and run just fine, but if you upgrade to a new version of Hibernate that
doesn’t depend on BeanUtils, you’ll start to get compile and runtime errors, and it won’t be immediately
obvious why your project stopped compiling. Also, because you haven’t explicitly listed a dependency
version, Maven cannot resolve any version conflicts that may arise.

A good rule of thumb in Maven is to always declare explicit dependencies for classes referenced in
your code. If you are going to be importing Commons BeanUtils classes, you should also be declaring a
direct dependency on Commons BeanUtils. Fortunately, via bytecode analysis, the Maven Dependency
plugin is able to assist you in uncovering direct references to dependencies. Using the updated POMs
we previously optimized, let’s look to see if any errors pop up:

$ mvn dependency:analyze
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Chapter 8 Simple Parent Project
[INFO] Chapter 8 Simple Object Model
[INFO] Chapter 8 Simple Weather API
[INFO] Chapter 8 Simple Persistence API
[INFO] Chapter 8 Simple Command Line Tool
[INFO] Chapter 8 Simple Web Application
[INFO] Chapter 8 Parent Project
[INFO] Searching repository for plugin with prefix: 'dependency'.

...

[INFO] --
[INFO] Building Chapter 8 Simple Object Model
[INFO] task-segment: [dependency:analyze]
[INFO] --
[INFO] Preparing dependency:analyze
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [dependency:analyze]
[WARNING] Used undeclared dependencies found:
[WARNING] javax.persistence:persistence-api:jar:1.0:compile
[WARNING] Unused declared dependencies found:
[WARNING] org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile
[WARNING] org.hibernate:hibernate:jar:3.2.5.ga:compile
[WARNING] junit:junit:jar:3.8.1:test

...

[INFO] --
[INFO] Building Chapter 8 Simple Web Application
[INFO] task-segment: [dependency:analyze]
[INFO] --

129

[INFO] Preparing dependency:analyze
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] No sources to compile
[INFO] [dependency:analyze]
[WARNING] Used undeclared dependencies found:
[WARNING] org.sonatype.mavenbook.optimize:simple-model:jar:1.0:compile
[WARNING] Unused declared dependencies found:
[WARNING] org.apache.velocity:velocity:jar:1.5:compile
[WARNING] javax.servlet:jstl:jar:1.1.2:compile
[WARNING] taglibs:standard:jar:1.1.2:compile
[WARNING] junit:junit:jar:3.8.1:test

In the truncated output just shown, you can see the output of the dependency:analyze goal. This
goal analyzes the project to see whether there are any indirect dependencies, or dependencies that
are being referenced but are not directly declared. In the simple-model project, the Dependency
plugin indicates a “used undeclared dependency” on javax.persistence:persistence-api. To
investigate further, go to the simple-model directory and run the dependency:tree goal, which will
list all of the project’s direct and transitive dependencies:

$ mvn dependency:tree
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'dependency'.
[INFO] --
[INFO] Building Chapter 8 Simple Object Model
[INFO] task-segment: [dependency:tree]
[INFO] --
[INFO] [dependency:tree]
[INFO] org.sonatype.mavenbook.optimize:simple-model:jar:1.0
[INFO] +- org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile
[INFO] | \- javax.persistence:persistence-api:jar:1.0:compile
[INFO] +- org.hibernate:hibernate:jar:3.2.5.ga:compile
[INFO] | +- net.sf.ehcache:ehcache:jar:1.2.3:compile
[INFO] | +- commons-logging:commons-logging:jar:1.0.4:compile
[INFO] | +- asm:asm-attrs:jar:1.5.3:compile
[INFO] | +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | +- antlr:antlr:jar:2.7.6:compile
[INFO] | +- cglib:cglib:jar:2.1_3:compile
[INFO] | +- asm:asm:jar:1.5.3:compile
[INFO] | \- commons-collections:commons-collections:jar:2.1.1:compile
[INFO] \- junit:junit:jar:3.8.1:test
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

From this output, we can see that the persistence-api dependency is coming from hibernate. A
cursory scan of the source in this module will reveal many javax.persistence import statements

130

confirming that we are, indeed, directly referencing this dependency. The simple fix is to add a direct
reference to the dependency. In this example, we put the dependency version in simple-parent’s
dependencyManagement section because the dependency is linked to Hibernate, and the Hibernate
version is declared here. Eventually you are going to want to upgrade your project’s version of Hibernate.
Listing the persistence-api dependency version near the Hibernate dependency version will make
it more obvious later when your team modifies the parent POM to upgrade the Hibernate version.

If you look at the dependency:analyze output from the simple-web module, you will see that
we also need to add a direct reference to the simple-model dependency. The code in simple-
webapp directly references the model objects in simple-model, and the simple-model is exposed to
simple-webapp as a transitive dependency via simple-persist. Since this is a sibling dependency
that shares both the version and groupId, the dependency can be defined in simple-webapp’s
pom.xml using the ${project.groupId} and ${project.version}.

How did the Maven Dependency plugin uncover these issues? How does dependency:analyze know
which classes and dependencies are directly referenced by your project’s bytecode? The Dependency
plugin uses the ObjectWeb ASM (http://asm.objectweb.org/) toolkit to analyze the raw bytecode. The
Dependency plugin uses ASM to walk through all the classes in the current project, and it builds a list of
every other class referenced. It then walks through all the dependencies, direct and transitive, and marks
off the classes discovered in the direct dependencies. Any classes not located in the direct dependencies
are discovered in the transitive dependencies, and the list of “used, undeclared dependencies” is
produced.

In contrast, the list of unused, declared dependencies is a little trickier to validate, and less useful than
the “used, undeclared dependencies.” For one, some dependencies are used only at runtime or for tests,
and they won’t be found in the bytecode. These are pretty obvious when you see them in the output;
for example, JUnit appears in this list, but this is expected because it is used only for unit tests. You’ll
also notice that the Velocity and Servlet API dependencies are listed in this list for the simple-web
module. This is also expected because, although the project doesn’t have any direct references to the
classes of these artifacts, they are still essential during runtime.

Be careful when removing any unused, declared dependencies unless you have very good test coverage,
or you might introduce a runtime error. A more sinister issue pops up with bytecode optimization. For
example, it is legal for a compiler to substitute the value of a constant and optimize away the reference.
Removing this dependency will cause the compile to fail, yet the tool shows it as unused. Future versions
of the Maven Dependency plugin will provide better techniques for detecting and/or ignoring these
types of issues.

You should use the dependency:analyze tool periodically to detect these common errors in your
projects. It can be configured to fail the build if certain conditions are found, and it is also available
as a report.

http://asm.objectweb.org/

131

8.6. Final POMs
As an overview, the final POM files are listed as a reference for this chapter. Example 8.1, “Final POM
for simple-parent” shows the top-level POM for simple-parent.

Example 8.1. Final POM for simple-parent

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.mavenbook.optimize</groupId>
 <artifactId>simple-parent</artifactId>
 <packaging>pom</packaging>
 <version>1.0</version>
 <name>Chapter 8 Simple Parent Project</name>

 <modules>
 <module>simple-command</module>
 <module>simple-model</module>
 <module>simple-weather</module>
 <module>simple-persist</module>
 <module>simple-webapp</module>
 </modules>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>hibernate3-maven-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <components>
 <component>
 <name>hbm2ddl</name>
 <implementation>annotationconfiguration</implementation>
 </component>
 </components>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>

132

 <artifactId>hsqldb</artifactId>
 <version>${hsqldb.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <properties>
 <hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>
 <hsqldb.version>1.8.0.7</hsqldb.version>
 </properties>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 <dependency>
 <groupId>javax.persistence</groupId>
 <artifactId>persistence-api</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>${hibernate.annotations.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>${hibernate.annotations.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>3.2.5.ga</version>
 <exclusions>
 <exclusion>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 </dependencyManagement>

133

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The POM shown in Example 8.2, “Final POM for simple-command” captures the POM for simple-
command, the command-line version of the tool.

Example 8.2. Final POM for simple-command

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.optimize</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-command</artifactId>
 <packaging>jar</packaging>
 <name>Chapter 8 Simple Command Line Tool</name>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <mainClass>org.sonatype.mavenbook.weather.Main</mainClass>
 <addClasspath>true</addClasspath>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>

134

 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-weather</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-persist</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 </dependency>
 </dependencies>
</project>

The POM shown in Example 8.3, “Final POM for simple-model” is the simple-model project’s POM.
The simple-model project contains all of the model objects used throughout the application.

Example 8.3. Final POM for simple-model

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.optimize</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-model</artifactId>
 <packaging>jar</packaging>

 <name>Chapter 8 Simple Object Model</name>

135

 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 </dependency>
 <dependency>
 <groupId>javax.persistence</groupId>
 <artifactId>persistence-api</artifactId>
 </dependency>
 </dependencies>
</project>

The POM shown in Example 8.4, “Final POM for simple-persist” is the simple-persist project’s
POM. The simple-persist project contains all of the persistence logic that is implemented using
Hibernate.

Example 8.4. Final POM for simple-persist

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.optimize</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-persist</artifactId>
 <packaging>jar</packaging>

 <name>Chapter 8 Simple Persistence API</name>

 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-model</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 </dependency>
 <dependency>

136

 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 </dependency>
 </dependencies>
</project>

The POM shown in Example 8.5, “Final POM for simple-weather” is the simple-weather project’s
POM. The simple-weather project is the project that contains all of the logic to parse the Yahoo!
Weather RSS feed. This project depends on the simple-model project.

Example 8.5. Final POM for simple-weather

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.optimize</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>

 <name>Chapter 8 Simple Weather API</name>

 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-model</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 <dependency>
 <groupId>dom4j</groupId>
 <artifactId>dom4j</artifactId>
 <version>1.6.1</version>
 </dependency>

137

 <dependency>
 <groupId>jaxen</groupId>
 <artifactId>jaxen</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Finally, the POM shown in Example 8.6, “Final POM for simple-webapp” is the simple-webapp
project’s POM. The simple-webapp project contains a web application that stores retrieved weather
forecasts in an HSQLDB database and that also interacts with the libraries generated by the simple-
weather project.

Example 8.6. Final POM for simple-webapp

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.optimize</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <name>Chapter 8 Simple Web Application</name>
 <dependencies>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-model</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-weather</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>

138

 <groupId>${project.groupId}</groupId>
 <artifactId>simple-persist</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>
 <version>1.1.2</version>
 </dependency>
 <dependency>
 <groupId>taglibs</groupId>
 <artifactId>standard</artifactId>
 <version>1.1.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <version>6.1.9</version>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>${hsqldb.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

8.7. Conclusion
This chapter has shown you several techniques for improving the control of your dependencies and
plugins to ease future maintenance of your builds. We recommend periodically reviewing your builds in
this way to ensure that duplication and thus potential trouble spots are minimized. As a project matures,
new dependencies are inevitably introduced, and you may find that a dependency previously used in 1
place is now used in 10 and should be moved up. The used and unused dependencies list changes over
time and can easily be cleaned up with the Maven Dependency plugin.

Appendix A. Creative Commons
License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
3.0 United States license. For more information about this license, see http://creativecommons.org/
licenses/by-nc-nd/3.0/us/. You are free to share, copy, distribute, display, and perform the work under
the following conditions:

• You must attribute the work to Sonatype, Inc. with a link to http://www.sonatype.com.

• You may not use this work for commercial purposes.

• You may not alter, transform, or build upon this work.

If you redistribute this work on a web page, you must include the following link with the URL in the
about attribute listed on a single line (remove the backslashes and join all URL parameters):

<div xmlns:cc="http://creativecommons.org/ns#"
 about="http://creativecommons.org/license/results-one?q_1=2&q_1=1\
 &field_commercial=n&field_derivatives=n&field_jurisdiction=us\
 &field_format=StillImage&field_worktitle=Repository%3A+\Management\
 &field_attribute_to_name=Sonatype%2C+Inc.\
 &field_attribute_to_url=http%3A%2F%2Fwww.sonatype.com\
 &field_sourceurl=http%3A%2F%2Fwww.sonatype.com%2Fbook\
 &lang=en_US&language=en_US&n_questions=3">
 <a rel="cc:attributionURL" property="cc:attributionName"
 href="http://www.sonatype.com">Sonatype, Inc. /
 <a rel="license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/us/">
 CC BY-NC-ND 3.0
</div>

When downloaded or distributed in a jurisdiction other than the United States of America, this work
shall be covered by the appropriate ported version of Creative Commons Attribution-Noncommercial-
No Derivative Works 3.0 license for the specific jurisdiction. If the Creative Commons Attribution-
Noncommercial-No Derivative Works version 3.0 license is not available for a specific jurisdiction,
this work shall be covered under the Creative Commons Attribution-Noncommercial-No Derivate
Works version 2.5 license for the jurisdiction in which the work was downloaded or distributed. A
comprehensive list of jurisdictions for which a Creative Commons license is available can be found on
the Creative Commons International web site at http://creativecommons.org/international.

If no ported version of the Creative Commons license exists for a particular jurisdiction, this work shall
be covered by the generic, unported Creative Commons Attribution-Noncommercial-No Derivative
Works version 3.0 license available from http://creativecommons.org/licenses/by-nc-nd/3.0/.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://www.sonatype.com
http://creativecommons.org/international
http://creativecommons.org/licenses/by-nc-nd/3.0/

140

A.1. Creative Commons BY-NC-ND 3.0 US License

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States1

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE
MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in
which the Work in its entirety in unmodified form, along with one or more other contributions,
constituting separate and independent works in themselves, are assembled into a collective
whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as
defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-
existing works, such as a translation, musical arrangement, dramatization, fictionalization,
motion picture version, sound recording, art reproduction, abridgment, condensation, or any
other form in which the Work may be recast, transformed, or adapted, except that a work that
constitutes a Collective Work will not be considered a Derivative Work for the purpose of
this License. For the avoidance of doubt, where the Work is a musical composition or sound
recording, the synchronization of the Work in timed-relation with a moving image ("synching")
will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means the individual, individuals, entity or entities that offers the Work under the
terms of this License.

d. "Original Author" means the individual, individuals, entity or entities who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this License despite a previous violation.

1 http://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode

http://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode
http://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode

141

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising
from fair use, first sale or other limitations on the exclusive rights of the copyright owner under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You
a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to
reproduce the Work as incorporated in the Collective Works; and,

b. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly
by means of a digital audio transmission the Work including as incorporated in Collective
Works.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically necessary
to exercise the rights in other media and formats, but otherwise you have no rights to make
Derivative Works. All rights not expressly granted by Licensor are hereby reserved, including but
not limited to the rights set forth in Sections 4(d) and 4(e).

4. Restrictions.The license granted in Section 3 above is expressly made subject to and limited by
the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work
only under the terms of this License, and You must include a copy of, or the Uniform Resource
Identifier for, this License with every copy or phonorecord of the Work You distribute, publicly
display, publicly perform, or publicly digitally perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of a recipient of the Work
to exercise the rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the
disclaimer of warranties. When You distribute, publicly display, publicly perform, or publicly
digitally perform the Work, You may not impose any technological measures on the Work that
restrict the ability of a recipient of the Work from You to exercise the rights granted to that
recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated
in a Collective Work, but this does not require the Collective Work apart from the Work itself
to be made subject to the terms of this License. If You create a Collective Work, upon notice
from any Licensor You must, to the extent practicable, remove from the Collective Work any
credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private monetary
compensation. The exchange of the Work for other copyrighted works by means of digital file-
sharing or otherwise shall not be considered to be intended for or directed toward commercial

142

advantage or private monetary compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted works.

c. If You distribute, publicly display, publicly perform, or publicly digitally perform the Work (as
defined in Section 1 above) or Collective Works (as defined in Section 1 above), You must,
unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for
the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/
or Licensor designate another party or parties (e.g. a sponsor institute, publishing entity, journal)
for attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if supplied; to the
extent reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to
be associated with the Work, unless such URI does not refer to the copyright notice or licensing
information for the Work. The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a Collective Work, at a minimum
such credit will appear, if a credit for all contributing authors of the Collective Work appears,
then as part of these credits and in a manner at least as prominent as the credits for the other
contributing authors. For the avoidance of doubt, You may only use the credit required by
this clause for the purpose of attribution in the manner set out above and, by exercising Your
rights under this License, You may not implicitly or explicitly assert or imply any connection
with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties,
as appropriate, of You or Your use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to
collect whether individually or, in the event that Licensor is a member of a performance
rights society (e.g. ASCAP, BMI, SESAC), via that society, royalties for the public
performance or public digital performance (e.g. webcast) of the Work if that performance
is primarily intended for or directed toward commercial advantage or private monetary
compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect,
whether individually or via a music rights agency or designated agent (e.g. Harry Fox
Agency), royalties for any phonorecord You create from the Work ("cover version") and
distribute, subject to the compulsory license created by 17 USC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions), if Your distribution of such cover
version is primarily intended for or directed toward commercial advantage or private
monetary compensation.

e. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a
sound recording, Licensor reserves the exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for the public digital performance

143

(e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section
114 of the US Copyright Act (or the equivalent in other jurisdictions), if Your public digital
performance is primarily intended for or directed toward commercial advantage or private
monetary compensation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND ONLY TO THE EXTENT OF ANY
RIGHTS HELD IN THE LICENSED WORK BY THE LICENSOR. THE LICENSOR
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE
WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT
LIMITATION, WARRANTIES OF TITLE, MARKETABILITY, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE
OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE
OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY
NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by
You of the terms of this License. Individuals or entities who have received Collective Works (as
defined in Section 1 above) from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the
right to release the Work under different license terms or to stop distributing the Work at any
time; provided, however that any such election will not serve to withdraw this License (or any
other license that has been, or is required to be, granted under the terms of this License), and
this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work (as defined in Section 1 above)
or a Collective Work (as defined in Section 1 above), the Licensor offers to the recipient a

144

license to the Work on the same terms and conditions as the license granted to You under this
License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not
affect the validity or enforceability of the remainder of the terms of this License, and without
further action by the parties to this agreement, such provision shall be reformed to the minimum
extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such
waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any additional provisions that may
appear in any communication from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection
with the Work. Creative Commons will not be liable to You or any party on any legal theory for
any damages whatsoever, including without limitation any general, special, incidental or consequential
damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if
Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and
obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
Creative Commons does not authorize the use by either party of the trademark "Creative Commons"
or any related trademark or logo of Creative Commons without the prior written consent of Creative
Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark
usage guidelines, as may be published on its website or otherwise made available upon request from
time to time. For the avoidance of doubt, this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Appendix B. Book Revision History
Many readers have been asking us to keep track of specific changes to the book content, the following
sections list changes made to the book in reverse chronological order starting with 0.3.1.

B.1. Changes in Edition 0.2.1
The following changes were made in 0.2.1:

• Minor typos were fixed throughout the book.

B.2. Changes in Edition 0.2
The following changes were made in 0.2:

• The book index was expanded and improved. (MVNEX-561)

• Added a Table of Figures. (MVNEX-582)

• Added a Table of Examples. (MVNEX-593)

• Fixed a small formatting error in Section 4.12.2, “Skipping Unit Tests”. (MVNEX-224)

• Fixed a program listing typo in Section 4.6, “Simple Weather Source Code”. (MVNEX-315)

• Modified examples download information for the new book. (MVNEX-686)

B.3. Changes in Edition 0.1
This is the initial version of Maven: The Complete Reference.

The following changes were made:

• Removed all cross-references that referenced content in the former Part I of Maven: The Definitive
Guide. (MVNEX-17)

• Uploaded new book to Scribd as both a private staging version and a public production version.
Updated the book project's pom.xml accordingly. (MVNEX-28)

• Cloned Maven: The Definitive Guide's Github repository and created a new Github repository for
Maven by Example. (MVNEX-39)

• Modified the book project build to publish book to new URL and to use new identifiers for all
generated artifacts. (MVNEX-410)

https://issues.sonatype.org/browse/MVNEX-56
https://issues.sonatype.org/browse/MVNEX-58
https://issues.sonatype.org/browse/MVNEX-59
https://issues.sonatype.org/browse/MVNEX-22
https://issues.sonatype.org/browse/MVNEX-31
https://issues.sonatype.org/browse/MVNEX-68
https://issues.sonatype.org/browse/MVNEX-1
https://issues.sonatype.org/browse/MVNEX-2
https://issues.sonatype.org/browse/MVNEX-3
https://issues.sonatype.org/browse/MVNEX-4

146

• Created a new book cover for the downloadable PDF version of Maven by Example. (MVNEX-511)

• Modified the title page for Maven by Example. (MVNEX-612)

• Assigned new ISBN to Maven by Example (978-0-9842433-3-4 0-9842433-3-X). (MVNEX-813)

• Created a GetSatisfaction page for Maven: The Complete Reference, here: http://
www.getsatisfaction.com/sonatype/products/sonatype_maven_by_example14 . (MVNEX-915)

• Created automated Hudson jobs for publishing to staging and production. (MVNEX-2016)

• Updated front matter and copyright to match other Sonatype books. (MVNEX-1917)

• Modified the web site template for the book pages. (MVNEX-718)

• Add Maven by Example to the Sonatype Books page. (MVNEX-1419)

• Created a download form for Maven by Example PDF. (MVNEX-1620)

https://issues.sonatype.org/browse/MVNEX-5
https://issues.sonatype.org/browse/MVNEX-6
https://issues.sonatype.org/browse/MVNEX-8
http://www.getsatisfaction.com/sonatype/products/sonatype_maven_the_complete_reference
http://www.getsatisfaction.com/sonatype/products/sonatype_maven_the_complete_reference
https://issues.sonatype.org/browse/MVNEX-9
https://issues.sonatype.org/browse/MVNEX-20
https://issues.sonatype.org/browse/MVNEX-19
https://issues.sonatype.org/browse/MVNEX-7
https://issues.sonatype.org/browse/MVNEX-14
https://issues.sonatype.org/browse/MVNEX-16

Index
A
annotations (Hibernate), 86
Apache Ant, 1, 5, 5

build.xml, 6
Apache Maven

definition, 1
downloading, 9
getting help, 15
installation directory, 12
installation of, 9, 10
local repository, 13
Maven settings, 13
prerequisites, 9
project web site, 15
repositories, 29
running, 20
uninstalling, 14
upgrading, 13
users mailing list, 15

Apache Software License, 15
ApplicationContext (Spring Framework), 92
applications, building and packaging, 20

command-line applications, 58-59
Archetype plugin, 17, 61

creating a project, 17
creating simple weather application with, 36
generate goal, 61

archetypes, 17, 18
artifactId attribute (pom.xml), 29
Assembly plugin, 58

assembly goal, 58
attaching to phase, 60

attaching a goal to a phase, 59

B
base directory, 19
book examples, 17
build lifecycle, 24

default Maven lifecycle, 24

building a Maven project, 20
building applications, 20
bytecode analysis (Dependency plugin), 130

C
classes

creating new, 41
classwords-1.1.jar file, 13
cleaning up POMs, 122

(see also optimizing POMs)
command-line application, packaging, 58-59
common interface, 2
comparison to Ant, 5, 5
compile:compile goal, 25
Compiler plugin, 37

compile goal, 25, 25
configuration, 63
testCompile goal, 25, 25

compiling projects, 77
(see also WAR files)

Convention Over Configuration, 1
convention over configuration, 23
coordinates, 27-29
creating a project, 17
customizing projects, 35-59

adding project information to pom.xml, 38
adding resources, 46-47
adding test-scoped dependencies, 52
building packaged command-line application,
58-59
creating the project, 36
defining the project, 35
running (executing), 47-50
unit tests, executing, 55
Web applications (see Web applications)
writing unit tests, 50

D
DAO (Data Access Objects), 93
debugging Maven, 50
default Maven lifecycle, 24, 24
dependencies

148

exploring with Dependency plugin, 49
J2EE dependencies, adding, 67
javax.transaction:javax (unavailable), 94
on JSP 2.0 specification, 68
optimizing, 122-126

Maven Dependency plugin for, 127-130
plugin (see plugins)
test-scoped, 52

dependency management, 4, 31, 39
Dependency plugin, 49

analyze goal, 129
resolve goal, 49
tree goal, 49

dependency scope, 67
developer information (project information)

adding to project, 38
documentation generation, 33
downloading Maven, 9
duplicated dependency declarations, 122

E
enterprise project, multi-module (example), 81

simple parent project, 84
Simple Weather module of, 89

enterprise project, multimodule (example)
running Web application, 109
Simple Persist module of, 93
Simple Web Application of, 99

@Entity annotation (Hibernate), 88
Exec plugin

java goal, 47
executing code via Maven, 47
executing goals, 22, 22

(see also goals)
executing lifecycle phases, 24

G
generating a dependency tree, 49
goals, 22, 22

(see also plugins)
about, 18
attaching to lifecycle phases, 24

defined, 23
groupId attribute (pom.xml), 28

built-in, to avoid dependency duplication, 125
Guice, 61

H
Help plugin

describe goal, 48
effective POM, 21

Hibernate, 61
Hibernate annotations, 86
Hibernate plugin, 102
hibernate.cfg.xml file, 98
Hibernate3 plugin, 98

building database using, 109
HQL (Hibernate Query Language), 88

I
IDE integration, 4
installing Maven, 9, 10

on Mac OS X, 10
on FreeBSD, 12
on Linux, 11
on Mac OSX, 10
on Mac OSX with MacPorts, 11
on OpenBSD, 12
on Windows, 11
verifying installation, 12

interface projects, 119

J
J2EE dependencies, adding, 67
Jar plugin

jar goal, 25
jar:jar goal, 25
Java Development Kit (JDK) , 9, 9
Java Server Page (JSP), 61
javax.transaction:javax dependency (unavailable),
94
Jetty, 64
Jetty plugin, 102

configuration, 64

149

configuring in pom.xml, 64-65
run goal, 64, 78

JSP 2.0 specification, dependency on, 68

L
LICENSE.txt file, 12
licensing information (project information)

adding to project, 38
lifecycle, Maven (see build lifecycle)
local repository, 13, 30

installing artifacts in, 30

M
m2 directory, contents of, 13
M2_HOME environment variable

Maven installation and, 10
Mac OS X, installing Maven on, 10
Maven (see Apache Maven)
Maven, installing

on Mac OS X, 10
Maven Archetype plugin

creating simple weather application with, 36
Maven Assembly plugin, 58
Maven coordinates, 27-29
Maven Dependency plugin, 49

analyze goal, 129
optimizing POMs with, 127-130

Maven directory, 12
Maven goals, about, 18
Maven Hibernate plugin, 102
Maven Hibernate3 plugin, 98

building database using, 109
Maven Jetty plugin, 102

configuring in pom.xml, 64-65
Maven lifecycle (see build lifecycle)
Maven plugins (see plugins)
Maven prerequisites, 9
Maven repositories, 29
maven repository

structure, 30
Maven settings, 13
Maven Standard Directory Layout, 19

Maven Surefire plugin
test goal, 25
testFailureIgnore configuration property, 56

Maven web site, 15
merging POM changes, 123
<module> element (pom.xml), 72
<modules> element (pom.xml), 72
multi-module project

organization, 82
multi-module project (example), 71

building, 77
multi-module enterprise project, 81

simple parent project, 84
Simple Persist module of, 93
Simple Weather module of, 89

running, 78
simple parent project, 71
simple weather submodule, 73-75
simple web application submodule, 75-76

multimodule project (example)
multimodule enterprise project

running Web application, 109
Simple Web Application of, 99

multimodule projects, optimizing POMs for, 122
mvn install command, 20
mvn script, 12

N
@NamedQueries annotation (Hibernate), 88
@NamedQuery annotation (Hibernate), 88
Nexus, 4
NOTICE.txt file, 12

O
object model (see POM; pom.xml file)
ObjectWeb ASM toolkit, 130
online resources, 15
optimizing POMs, 121-138

about cleaning up POMs, 122
dependency optimization, 122-126
Maven Dependency plugin, 127-130
plugin optimization, 126-127

150

organizational information (project information)
adding to project, 38

P
packaging applications, 20

command-line applications, 58-59
packaging attribute (pom.xml), 29
parent POM, 18, 74

(see also POM)
resolving dependency duplication, 122

path customization, 2
PATH variable, Maven installation and, 10
phases, lifecycle (see build lifecycle)
Plexus, 61
plugin configuration, 59
plugin goals (see goals)
<pluginManagement> element (pom.xml), 127
plugins, 22

optimizing, 126-127
POM (Project Object Model), 20

merging POMs, 123
optimizing and refactoring, 121-138

about cleaning up POMs, 122
dependency optimization, 122-126
with Maven Dependency plugin, 127-130
plugin optimization, 126-127

parent (top-level), 74
resolving dependency duplication, 122

pom.xml, 7, 21, 37, 62, 73
pom.xml file, 20

defining submodules, 72
final POMs (for reference)

simple-command POM, 133
simple-model POM, 134
simple-parent POM, 131
simple-persist POM, 135
simple-weather POM, 136
simple-webapp POM, 137

for simple Web project (example), 62
optimizing (see optimizing POMs)
parent (top-level), 74

resolving dependency duplication, 122
project information in

adding, 38
project information (in pom.xml)

adding to project, 38
Project Object Model (see POM; pom.xml file)
Project Object Model (POM), 4, 7, 17, 20
project relationships, 30
projects

customizing, 35-59
adding project information to pom.xml, 38
adding resources, 46-47
adding test-scoped dependencies, 52
building packaged command-line
application, 58-59
creating the project, 36
defining the project, 35-36
running (executing), 47-50
unit tests, executing, 55
writing unit tests, 50

Web applications (see Web applications)
public repository

Central Maven Repository, 3

R
README.txt file, 12
refactoring POMs (see optimizing POMs)
remote repositories, 4
remote repository, 30
replicated dependencies, 122
report generation, 33
repositories, 29, 29
resources

adding to packages, 46-47
resources directory, creating, 46
Resources plugin

resources goal, 24, 24
testResources goal, 25, 25

S
<scope> element (%lt;dependency> element), 53
scope, dependency, 32
searching, 4
searching for artifacts, 40

151

servlet, 61
Servlet API, adding as dependency, 67
servlet attribute (web.xml), 66
servlet-mapping attribute (web.xml), 66
servlets, adding to project, 65
settings.xml, 13, 65
settings.xml file, 13
sibling module dependency duplication, 122, 123,
125
simple parent project (example)

final POM for (for reference), 131
multi-module, 71
multi-module enterprise, 84

simple weather application (see weather project
(example))
simple Web application (see Web applications)
simple-command POM (for reference), 133
simple-model POM (for reference), 134
simple-parent POM (for reference), 131
simple-persist POM (for reference), 135
simple-weather POM (for reference), 136
simple-webapp POM (for reference), 137
site generation, 33
site lifecycle phase, 33
skipping unit tests, 57
Sonatype, 15
Spring Framework, 61, 61, 95
Standard Directory Layout, 19
submodules, defining in pom.xml, 72
Surefire plugin, 3

skipping tests, 57
test goal, 25, 25
testFailureIgnore configuration property, 56

T
@Table annotation (Hibernate), 88
test-scoped dependencies, 52
testFailureIgnore configuration property (Surefire
plugin), 56
testing, 50

(see also debugging)
Surefire:test goal, 25
unit tests (see unit tests)

using test-scoped dependencies, 52
top-level POM, 18, 74

(see also POM)
resolving dependency duplication, 122

transitive dependencies
support for, 31

transitive dependency, 32

U
uninstalling Maven, 14
unit tests

dependency duplication and, 122
executing, 55
ignoring test failures, 56
test-scoped dependencies, 52
writing, 50

universal reuse, 3, 4
unused, undeclared dependencies (Dependency
plugin), 130
upgrading Maven, 13
used, undeclared dependencies (Dependency
plugin), 130
users mailing list, 15

V
Velocity, 61
Velocity template, 103
version attribute (pom.xml), 29

built-in, to avoid dependency duplication, 125

W
WAR files, 63

compiling multi-module projects into, 77
weather project (example), 71

(see also multi-module project)
adding project information to pom.xml, 38
adding resources, 46-47
adding test-scoped dependencies, 52
building packaged command-line application,
58-59
creating, 36
defining, 35

152

final simple-weather POM, 136
running (executing), 47-50
unit tests, executing, 55
writing unit tests, 50

Web applications
final simple-weather POM, 137
multi-module enterprise project example, 81

simple parent project, 84
Simple Weather module of, 89

multi-module project example, 71
building, 77
running, 78
simple parent project, 71
simple weather submodule, 73-75
simple web application submodule, 75-76

multimodule enterprise project example
running Web application, 109
Simple Persist module of, 93
Simple Web Application of, 99

simple Web project (example), 61
adding J2EE dependences, 67
adding simple servlet, 65
configuring Jetty plugin, 64-65
creating, 61-63

web.xml file, 76
servlet and servlet-mapping attributes, 66

Y
Yahoo! Weather RSS feed, about, 36

Maven Training by Sonatype

http://www.sonatype.com/training

With Sonatype training, you will learn Maven fundamentals and best practices directly
from Maven and Nexus experts. If your team is using Nexus, this class is the easiest
way to make sure that everyone starts from the same foundation.

MVN-101 Maven Mechanics
An online instructor-led course of two half-day sessions, ideal for programmers who
work with Maven projects and need to understand how to work with an existing
Maven build. This class is also appropriate for experienced Maven users who are inter-
ested in becoming more familiar with Maven fundamentals.

MVN-201 Development Infrastructure Design
An online instructor-led course of two half-day sessions, ideal for Development Infra-
structure Engineers who are responsible for maintaining enterprise development infra-
structure. This class includes content on advanced repository management using
Nexus and continuous integration using Hudson.

Nexus Professional

http://www.sonatype.com/products/nexus

Nexus Professional 1.4 is now available with a wide array of new features. This release
introduces new staging and repository management capabilities as well as improved
permissions management tools. Download your free, 30-day evaluation today.

"At Intuit, we recognize that as builds grow and the teams who create them change
over time, swift, accurate repository management becomes critical. Nexus provides
a comprehensive, easy-to-use open source solution that lets teams and developers
track, search, organize and access build components."

 - Kaizer Sogiawala, Software Con�guration Management Engineer, Intuit.

"We have adopted Maven for all our software development projects and have
started using Nexus to better support our development processes. The support for
promotion and procurement work�ows in Nexus Professional now expands Nexus
with a robust set of additional features which make it easier for us to maintain
consistency between our development, testing and production environments."

 - Chris Maki, Principal Software Engineer, Overstock.com

	Maven by Example
	Table of Contents
	Copyright
	Foreword: 0.3.1
	1. Changes in Edition 0.2.1

	Preface
	1. How to Use this Book
	2. Your Feedback
	3. Font Conventions
	4. Maven Writing Conventions
	5. Acknowledgements

	Chapter 1. Introducing Apache Maven
	1.1. Maven... What is it?
	1.2. Convention Over Configuration
	1.. A Common Interface
	1.4. Universal Reuse through Maven Plugins
	1.5. Conceptual Model of a "Project"
	1.6. Is Maven an alternative to XYZ?
	1.. Comparing Maven with Ant

	Chapter 2. Installing Maven
	2.1. Verify your Java Installation
	2.2. Downloading Maven
	2.3. Installing Maven
	2.3.1. Installing Maven on Mac OSX
	2.3.1.1. Installing Maven on OSX using MacPorts

	2.3.2. Installing Maven on Microsoft Windows
	2.3.3. Installing Maven on Linux
	2.3.4. Installing Maven on FreeBSD or OpenBSD

	2.4. Testing a Maven Installation
	2.5. Maven Installation Details
	2.5.1. User-specific Configuration and Repository
	2.5.2. Upgrading a Maven Installation
	2.5.3. Upgrading from Maven 1.x to Maven 2.x

	2.6. Uninstalling Maven
	2.7. Getting Help with Maven
	2.8. About the Apache Software License

	Chapter 3. A Simple Maven Project
	3.1. Introduction
	3.1.1. Downloading this Chapter's Example

	3.2. Creating a Simple Project
	3.3. Building a Simple Project
	3.4. Simple Project Object Model
	3.5. Core Concepts
	3.5.1. Maven Plugins and Goals
	3.5.2. Maven Lifecycle
	3.5.3. Maven Coordinates
	3.5.4. Maven Repositories
	3.5.5. Maven's Dependency Management
	3.5.6. Site Generation and Reporting

	3.6. Summary

	Chapter 4. Customizing a Maven Project
	4.1. Introduction
	4.1.1. Downloading this Chapter's Example

	4.2. Defining the Simple Weather Project
	4.2.1. Yahoo! Weather RSS

	4.3. Creating the Simple Weather Project
	4.4. Customize Project Information
	4.5. Add New Dependencies
	4.6. Simple Weather Source Code
	4.7. Add Resources
	4.8. Running the Simple Weather Program
	4.8.1. The Maven Exec Plugin
	4.8.2. Exploring Your Project Dependencies

	4.9. Writing Unit Tests
	4.10. Adding Test-scoped Dependencies
	4.11. Adding Unit Test Resources
	4.12. Executing Unit Tests
	4.12.1. Ignoring Test Failures
	4.12.2. Skipping Unit Tests

	4.13. Building a Packaged Command Line Application
	4.13.1. Attaching the Assembly Goal to the Package Phase

	Chapter 5. A Simple Web Application
	5.1. Introduction
	5.1.1. Downloading this Chapter's Example

	5.2. Defining the Simple Web Application
	5.3. Creating the Simple Web Project
	5.4. Configuring the Jetty Plugin
	5.5. Adding a Simple Servlet
	5.6. Adding J2EE Dependencies
	5.7. Conclusion

	Chapter 6. A Multi-module Project
	6.1. Introduction
	6.1.1. Downloading this Chapter's Example

	6.2. The Simple Parent Project
	6.3. The Simple Weather Module
	6.4. The Simple Web Application Module
	6.5. Building the Multimodule Project
	6.6. Running the Web Application

	Chapter 7. Multi-module Enterprise Project
	7.1. Introduction
	7.1.1. Downloading this Chapter's Example
	7.1.2. Multi-module Enterprise Project
	7.1.3. Technology Used in this Example

	7.2. The Simple Parent Project
	7.3. The Simple Model Module
	7.4. The Simple Weather Module
	7.5. The Simple Persist Module
	7.6. The Simple Web Application Module
	7.7. Running the Web Application
	7.8. The Simple Command Module
	7.9. Running the Simple Command
	7.10. Conclusion
	7.10.1. Programming to Interface Projects

	Chapter 8. Optimizing and Refactoring POMs
	8.1. Introduction
	8.2. POM Cleanup
	8.3. Optimizing Dependencies
	8.4. Optimizing Plugins
	8.5. Optimizing with the Maven Dependency Plugin
	8.6. Final POMs
	8.7. Conclusion

	Appendix A. Creative Commons License
	A.1. Creative Commons BY-NC-ND 3.0 US License

	Appendix B. Book Revision History
	B.1. Changes in Edition 0.2.1
	B.2. Changes in Edition 0.2
	B.3. Changes in Edition 0.1

	Index

